Determine the molecular formula of an oxide of iron in which the mass per cent of iron and oxygen are 69.9 and 30.1 respectively. Given that the molar mass of the oxide is 159.69 g mol–1.
From the available data Percentage of iron = 69.9
Percentage of oxygen= 30.1
Total percentage of iron & oxygen= 69.9+30.1= 100%
Step 1 calculation of simplest whole number ratios of the elements
Element |
Percentage |
Atomic mass |
Atomic ratio |
Simplest ratio |
Simplest whole no ratio |
Fe |
69.9 |
55.84 |
69.9/55.84=1.25 |
1.25= 1 |
2 |
O |
30.1 |
16 |
30.1/16 = 1.88 |
1.88=1.5 |
3 |
Step 2 Writing the empirical formula of the compound
The empirical formula of the compound = Fe2 O3
Step 3 determination of molecular formula of the compound
Empirical formula mass = 2 X69.9 + 3 X16=187.8 amu
Molecular mass of oxide= 159.69g/mol(given)
Now we know molecular formula = n x Empirical formula
And n= molecular mass / empirical formula mass= 159.69/187.8 = 0.85 = approx 1
Therefore molecular formula = n x empirical formula
=1 x(Fe2O3) = Fe2O3
The molecular formula of the oxide is Fe2O3
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
Chlorine is prepared in the laboratory by treating manganese dioxide (MnO2) with aqueous hydrochloric acid according to the reaction
4HCl(aq) + MnO2(s) → 2H2O(l) + MnCl2(aq) + Cl2(g)
How many grams of HCl react with 5.0 g of manganese dioxide?
Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.
A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction,
CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?
Calculate the mass of sodium acetate (CH3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol–1
A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.
How many significant figures are present in the following?
(i) 0.0025
(ii) 208
(iii) 5005
(iv) 126,000
(v) 500.0
(vi) 2.0034
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Give a brief description of the principles of the following techniques taking an example in each case.
(a) Crystallisation
(b) Distillation
(c) Chromatography
Consider the reactions :
2 S2O2– 3 (aq) + I2(s) → S4 O2– 6(aq) + 2I – (aq)
S2O2– 3(aq) + 2Br2(l) + 5 H2O(l) → 2SO2–4(aq) + 4Br–(aq) + 10H+(aq)
Why does the same reductant, thiosulphate react differently with iodine and bromine ?
Complete the following reactions:
When metal X is treated with sodium hydroxide, a white precipitate (A) is obtained, which is soluble in excess of NaOH to give soluble complex (B). Compound (A) is soluble in dilute HCl to form compound (C). The compound (A) when heated strongly gives (D), which is used to extract metal. Identify (X), (A), (B), (C) and (D). Write suitable equations to support their identities.
What is the state of hybridisation of carbon in
(a) CO2-3
(b) diamond
(c) graphite?
The reaction of cyanamide, NH2CN (s), with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be –742.7 kJ mol–1 at 298 K. Calculate enthalpy change for the reaction at 298 K.
NH2CN(g) + 3/2 O2(g) → N2(g) + CO2(g) + H2O(l)
Describe the effect of :
a) addition of H2
b) addition of CH3OH
c) removal of CO
d) removal of CH3OH on the equilibrium of the reaction: 2H2(g) + CO (g) ↔ CH3OH (g)
Consider the following species:
N3–, O2–, F–, Na+, Mg2+ and Al3+
(a) What is common in them?
(b) Arrange them in the order of increasing ionic radii.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
If the velocity of the electron in Bohr’s first orbit is 2.19 × 106 ms–1, calculate the de Broglie wavelength associated with it.
Thank you so much!
Thank you so much!
Thanks... ð
Thank you everyone ððð
Not clear on empherical formula
Empirical formula not clear
New sem 2 text solution
Thanks
Respected teacher, You have taken the percentage of iron instead of the molar mass of iron while calculating the Empirical Formula mass.Thank you for making available such detailed answers to us.
In NCERT the molecular mass of oxide is not given....that's why I was in trouble to find the answer...thank's for this information..