Write an expression for the work done when a force is acting on an object in the direction of its displacement.
When a force is acting on a body in the direction of the applied force, then the work done on the body is given by the expression:
Work done = Force × Displacement
W = F × s
An object of mass 40 kg is raised to a height of 5 m above the ground. What is its potential energy? If the object is allowed to fall, find its kinetic energy when it is half-way down.
Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why?
Illustrate the law of conservation of energy by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest? What happens to its energy eventually? Is it a violation of the law of conservation of energy?
A freely falling object eventually stops on reaching the ground. What happenes to its kinetic energy?
Define 1 J of work.
In each of the following a force, F is acting on an object of mass, m. The direction of displacement is from west to east shown by the longer arrow. Observe the diagrams carefully and state whether the work done by the force is negative, positive or zero.
Does the transfer of energy take place when you push a huge rock with all your might and fail to move it? Where is the energy you spend going?
The potential energy of a freely falling object decreases progressively. Does this violate the law of conservation of energy? Why?
The kinetic energy of an object of mass, m moving with a velocity of 5 m s-1 is 25 J. What will be its kinetic energy when its velocity is doubled? What will be its kinetic energy when its velocity is increased three times?
A certain household has consumed 250 units of energy during a month. How much energy is this in joules?
Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-rupees coin and a one-rupee coin?
State the universal law of gravitation.
Which of the following are matter?
Chair, air, love, smell, hate, almonds, thought, cold, cold-drink, smell of perfume.
What is meant by a pure substance?
How does the sound produced by a vibrating object in a medium reach your ear?
In a reaction, 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium observations are in agreement with the law of conservation of mass.
sodium carbonate + ethanoic acid → sodium ethanoate + carbon dioxide + water
What are canal rays?
State any two conditions essential for good health.
How is our atmosphere different from the atmospheres on Venus and Mars?
Who discovered cells, and how?
A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.
Write down the formulae of
(i) sodium oxide
(ii) aluminium chloride
(iii) sodium suphide
(iv) magnesium hydroxide
If one mole of carbon atoms weighs 12 gram, what is the mass (in gram) of 1 atom of carbon?
Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given, atomic mass of Na = 23 u, Fe = 56 u)?
Explain the basis for grouping organisms into five kingdoms.
What are polyatomic ions? Give examples.
Write the formula to find the magnitude of the gravitational force between the earth and an object on the surface of the earth.
Helium atom has an atomic mass of 4 u and two protons in its nucleus. How many neutrons does it have?
Amit buys few grams of gold at the poles as per the instruction of one of his friends. He hands over the same when he meets him at the equator. Will the friend agree with the weight of gold bought? If not, why? [Hint: The value of g is greater at the poles than at the equator.]
Calculate the force of gravitation between the earth and the Sun, given that the mass of the earth = 6 × 1024 kg and of the Sun = 2 × 1030 kg. The average distance between the two is 1.5 × 1011 m.