A sound wave travels at a speed of 339 m s-1. If its wavelength is 1.5 cm, what is the frequency of the wave? Will it be audible?
Speed of sound, = 339 m/s
Wavelength of sound, = 1.5 cm = 1.5 / 100 = 0.015 m
Speed of sound = Wavelength × Frequency
Frequency of of sound is 22600 Hz.
The audible range of the human ear is 20 Hz to 20000 Hz. It would not be audible.
Explain the working and application of a sonar.
Explain how sound is produced by your school bell.
Explain how defects in a metal block can be detected using ultrasound.
Distinguish between loudness and intensity of sound.
Which characteristic of the sound helps you to identify your friend by his voice while sitting with others in a dark room?
A sonar device on a submarine sends out a signal and receives an echo 5 s later. Calculate the speed of sound in water if the distance of the object from the submarine is 3625 m.
Which wave property determines
(a) loudness, (b) pitch?
How is ultrasound used for cleaning?
Explain how the human ear works.
Suppose you and your friend are on the moon. Will you be able to hear any sound produced by your friend?
Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-rupees coin and a one-rupee coin?
State the universal law of gravitation.
Which of the following are matter?
Chair, air, love, smell, hate, almonds, thought, cold, cold-drink, smell of perfume.
A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 11.3). Let us take it that the force acts on the object through the displacement. What is the work done in this case?
What is meant by a pure substance?
In a reaction, 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium observations are in agreement with the law of conservation of mass.
sodium carbonate + ethanoic acid → sodium ethanoate + carbon dioxide + water
What are canal rays?
State any two conditions essential for good health.
How is our atmosphere different from the atmospheres on Venus and Mars?
Who discovered cells, and how?
A diver is able to cut through water in a swimming pool. Which property of matter does this observation show?
How is our atmosphere different from the atmospheres on Venus and Mars?
(a) Tabulate the differences in the characterisitcs of states of matter.
(b) Comment upon the following: rigidity, compressibility, fluidity, filling a gas container, shape, kinetic energy and density.
Diagrammatically show the difference between the three types of muscle fibres.
What is pasturage and how is it related to honey production?
What causes winds?
What would happen to the life of a cell if there was no Golgi apparatus?
The speed-time graph for a car is shown is Fig. 8.12.
Fig. 8.12
(a) Find how far does the car travel in the first 4 seconds. Shade the area on the graph that represents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car?
A ball is gently dropped from a height of 20 m. If its velocity increases uniformly at the rate of 10 m s-2, with what velocity will it strike the ground? After what time will it strike the ground?
Illustrate the law of conservation of energy by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest? What happens to its energy eventually? Is it a violation of the law of conservation of energy?