An object of mass 100 kg is accelerated uniformly from a velocity of 5 m s-1 to 8 m s-1 in 6 s. Calculate the initial and final momentum of the object. Also, find the magnitude of the force exerted on the object.
Mass of the object, m = 100 kg
Initial velocity of the object, u = 5 m/s
Final velocity of the object, v = 8 m/s
Time take by the object to accelerate, t = 6 s
Initial momentum = mu = 100 × 5 = 500 kg m/s
Final momentum = mv = 100 × 8 = 800 kg m/s
By using Newton’s second law of motion, F = change in momentum / time taken =
Force exerted on the object is 50 N.
Two objects, each of mass 1.5 kg, are moving in the same straight line but in opposite directions. The velocity of each object is 2.5 m s-1 before the collision during which they stick together. What will be the velocity of the combined object after collision?
Two objects of masses 100 g and 200 g are moving along the same line and direction with velocities of 2 m s-1 and 1 m s-1, respectively. They collide and after the collision, the first object moves at a velocity of 1.67 m s-1. Determine the velocity of the second object.
Akhtar, Kiran and Rahul were riding in a motorcar that was moving with a high velocity on an expressway when an insect hit the windshield and got stuck on the windscreen. Akhtar and Kiran started pondering over the situation. Kiran suggested that the insect suffered a greater change in momentum as compared to the change in momentum of the motorcar (because the change in the velocity of the insect was much more than that of the motorcar). Akhtar said that since the motorcar was moving with a larger velocity, it exerted a larger force on the insect. And as a result the insect died. Rahul while putting an entirely new explanation said that both the motorcar and the insect experienced the same force and a change in their momentum. Comment on these suggestions
A hammer of mass 500 g, moving at 50 m s-1, strikes a nail. The nail stops the hammer in a very short time of 0.01 s. What is the force of the nail on the hammer?
From a rifle of mass 4 kg, a bullet of mass 50 g is fired with an initial velocity of 35 m s-1. Calculate the initial recoil velocity of the rifle.
A hockey ball of mass 200 g travelling at 10 m s-1 is struck by a hockey stick so as to return it along its original path with a velocity at 5 m s-1. Calculate the change of momentum occurred in the motion of the hockey ball by the force applied by the hockey stick.
A bullet of mass 10 g travelling horizontally with a velocity of 150 m s-1 strikes a stationary wooden block and comes to rest in 0.03 s. Calculate the distance of penetration of the bullet into the block. Also calculate the magnitude of the force exerted by the wooden block on the bullet.
A motorcar of mass 1200 kg is moving along a straight line with a uniform velocity of 90 km/h. Its velocity is slowed down to 18 km/h in 4 s by an unbalanced external force. Calculate the acceleration and change in momentum. Also calculate the magnitude of the force required.
Explain why some of the leaves may get detached from a tree if we vigorously shake its branch.
A truck starts from rest and rolls down a hill with a constant acceleration. It travels a distance of 400 m in 20 s. Find its acceleration. Find the force acting on it if its mass is 7 metric tonnes (Hint: 1 metric tonne = 1000 kg.)
State the universal law of gravitation.
Which of the following are matter?
Chair, air, love, smell, hate, almonds, thought, cold, cold-drink, smell of perfume.
A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 11.3). Let us take it that the force acts on the object through the displacement. What is the work done in this case?
What is meant by a pure substance?
How does the sound produced by a vibrating object in a medium reach your ear?
In a reaction, 5.3 g of sodium carbonate reacted with 6 g of ethanoic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium observations are in agreement with the law of conservation of mass.
sodium carbonate + ethanoic acid → sodium ethanoate + carbon dioxide + water
What are canal rays?
State any two conditions essential for good health.
How is our atmosphere different from the atmospheres on Venus and Mars?
Who discovered cells, and how?
Does the transfer of energy take place when you push a huge rock with all your might and fail to move it? Where is the energy you spend going?
When will you say a body is in
(i) uniform acceleration? (ii) non-uniform acceleration?
State which of the following situations are possible and give an example for each of these:
(a) an object with a constant acceleration but with zero velocity
(b) an object moving in a certain direction with an acceleration in the perpendicular direction.
If K and L shells of an atom are full, then what would be the total number of electrons in the atom?
What is the work done by the force of gravity on a satellite moving round the earth? Justify your answer.
Which separation techniques will you apply for the separation of the following?
(a) Sodium chloride from its solution in water.
(b) Ammonium chloride from a mixture containing sodium chloride and ammonium chloride.
(c) Small pieces of metal in the engine oil of a car.
(d) Different pigments from an extract of flower petals.
(e) Butter from curd.
(f) Oil from water.
(g) Tea leaves from tea.
(h) Iron pins from sand.
(i) Wheat grains from husk.
(j) Fine mud particles suspended in water.
Differentiate between homogeneous and heterogeneous mixtures with examples.
Classify the following as chemical or physical changes:
• cutting of trees,
• melting of butter in a pan,
• rusting of almirah,
• boiling of water to form steam,
• passing of electric current, through water and the water breaking down into hydrogen and oxygen gases,
• dissolving common salt in water,
• making a fruit salad with raw fruits, and
• burning of paper and wood.
Calculate the wavelength of a sound wave whose frequency is 220 Hz and speed is 440 m/s in a given medium.
Calculate the number of molecules of sulphur (S8) present in 16 g of solid sulphur.