Calculate the efficiency of packing in case of a metal crystal for
(i) simple cubic
(ii) body-centred cubic
(iii) face-centred cubic (with the assumptions that atoms are touching each other).
(i) Simple cubic:
Suppose the edge length of the unit cell = a
&
Radius of the sphere = r
Then,since the sphere are touching each other along the edge,therefore a = 2r
Now there are 8 spheres at the corners of the cube & each sphere at the corner is shared by 8 unit cells & the contribution per unit cell is 1/8 so that
Number of spheres per unit cell is 8 x 1/8 = 1
Volume of sphere =4/3πr3 & volume of cube = a3 = (2r)3 = 8r3
Now packing efficiency = (volume of one sphere / total volume of cubic unit cell) x 100
Or
(4/3 πr3 / 8r3) x 100 = 52.4%
Therefore the volume occupied in simple cubic arrangement = 52.4%
(ii) Body centered cubic:
Let us suppose the edge leght = a & radius of each sphere = r then there are 8 spheres at the corners & 1 in the body of unit cell
Therefore number of spheres per unit cell = (8 x1/8) + 1 = 2
Now volume of unit cell = a3 = (4r / √3)3
and volume of a sphere = 4 / 3πr3
Total volume of two spheres = 2 x 4/3πr3
Packing efficiency = (volume of two spheres in unit cell/total volume of unit cell ) x 100
= (2 x 4/3πr3 / (4r/√3)3 ) x 100 = 68%
Therefore volume occupied in bcc arrangement = 68%
(iii) Face centered:
let us suppose the edge length of the unit cell = a
Radius of each sphere = r
Now there are 8 spheres at the corner & 6 at the faces
Therefore number of spheres in unit cell = (8 x 1/8 + 6 x1/2) = 4
From the arrangement of fcc, we get a = 2√2r
Now volume of a unit cell = a3 = (2√2r)3 = 16√2r3
Total volume of 4 spheres = 4 x 4/3 πr3 = 16/3 πr3
Packing efficiency = (volume of 4 spheres in the unit cell/total volume of unit cell) x 100
= (16/3 πr3 /16√2r3) x 100 = 74%
Therefore volume occupied in fcc = 74%
If NaCl is doped with 10-3mol % of SrCl2, what is the concentration of cation vacancies?
A cubic solid is made of two elements P and Q. Atoms of Q are at the corners of the cube and P at the body-centre. What is the formula of the compound? What are the coordination numbers of P and Q?
An element with molar mass 2.7 x 10-2kg mol-1 forms a cubic unit cell with edge length 405 pm. If its density is 2.7 x 103 kg m-3, what is the nature of the cubic unit cell?
Copper crystallises into a fcc lattice with edge length 3.61 x 10-8cm. Show that the calculated density is in agreement with its measured value of 8.92 g cm-3.
A compound is formed by two elements M and N. The element N forms ccp and atoms of M occupy 1/3rd of tetrahedral voids. What is the formula of the compound?
Aluminium crystallises in a cubic close-packed structure. Its metallic radius is 125 pm.
(i) What is the length of the side of the unit cell?
(ii) How many unit cells are there in 1.00 cm3of aluminium?
Analysis shows that nickel oxide has the formula Ni0.98 O1.00. What fractions of nickel exist as Ni2+and Ni3+ions?
Distinguish between
(i)Hexagonal and monoclinic unit cells
(ii) Face-centred and end-centred unit cells.
Solid A is a very hard electrical insulator in solid as well as in molten state and melts at extremely high temperature. What type of solid is it?
Ionic solids, which have anionic vacancies due to metal excess defect, develop colour. Explain with the help of a suitable example.
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Write any two characteristics of Chemisorption.
Write the structures of the following compounds.
(i) α-Methoxypropionaldehyde
(ii) 3-Hydroxybutanal
(iii) 2-Hydroxycyclopentane carbaldehyde
(iv) 4-Oxopentanal
(v) Di-sec-butyl ketone
(vi) 4-Fluoroacetophenone
Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
Why are pentahalides more covalent than trihalides?
Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?
Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.
Write structures of the following compounds:
(i) 2-Chloro-3-methylpentane
(ii) 1-Chloro-4-ethylcyclohexane
(iii) 4-tert. Butyl-3-iodoheptane
(iv) 1,4-Dibromobut-2-ene
(v) 1-Bromo-4-sec. butyl-2-methylbenzene
Discuss briefly giving an example in each case the role of coordination compounds in:
(i) biological system
(ii) medicinal chemistry
(iii) analytical chemistry
(iv) extraction/metallurgy of metals
Vapour pressure of water at 293 Kis 17.535 mm Hg. Calculate the vapour pressure of water at 293 Kwhen 25 g of glucose is dissolved in 450 g of water.
Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose is to be added to 500 g of water such that it boils at 100°C.Molal elevation constant for water is 0.52 K kg mol-1.
An organic compound with the molecular formula C9H10O forms 2, 4-DNP derivative, reduces Tollens' reagent and undergoes Cannizzaro reaction. On vigorous oxidation, it gives 1, 2-benzenedicarboxylic acid. Identify the compound.
Why do soaps not work in hard water?
Out of C and CO, which is a better reducing agent for ZnO ?
Define thermoplastics and thermosetting polymers with two examples of each.
Identify the monomer in the following polymeric structures.
(i)
(ii)
Suggest the most important type of intermolecular attractive interaction in the following pairs.
(i) n-hexane and n-octane
(ii) I2 and CCl4
(iii) NaClO4 and water
(iv) methanol and acetone
(v) acetonitrile (CH3CN) and acetone (C3H6O).
Discuss the nature of bonding in metal carbonyls.