The motion of a body in simple harmonic motion is given by the displacement function,
x (t) = A cos (ωt + φ).
Given that at t = 0, the initial velocity of the body is ω cm/s and its initial position is 1 cm, calculate its initial phase angle and amplitude?
If in place of the cosine function, a sine function is used to represent the simple harmonic motion:
x = B sin (ωt + α),
calculate the body’s amplitude and initial phase considering the initial conditions given above. [Angular frequency of the particle is π/ s]
Given,
Initially, at t = 0:
Displacement, x = 1 cm
Initial velocity, v = ω cm/sec.
Angular frequency, ω = π rad/s
It is given that:
x(t) = A cos( ωt + Φ) . . . . . . . . . . . . . . . . ( i )
1 = A cos( ω x 0 + Φ) = Acos Φ
A cos Φ = 1 . . . . . . . . . . . . . . . . ( ii )
Velocity, v = dx / dt
differentiating equation ( i ) w.r.t ‘t’
v = – Aωsin ( ωt + Φ)
Now at t = 0; v = ω and
=> ω = – Aωsin ( ωt + Φ)
1 = – A sin( ω x 0 + Φ) = -Asin(Φ)
Asin(Φ) = – 1 . . . . . . . . . . . . . . . . . . . . . . . ( iii )
Adding and squaring equations ( ii ) and ( iii ), we get:
A2(sin2 Φ + cos2 Φ) = 1 +1
thus, A =√2
Dividing equation ( iii ) by ( ii ), we get :
tan Φ = -1
Thus, Φ =3π/4 , 7π/4
Now if simple harmonic motion is given as :
x = B sin( ωt + α)
Putting the given values in the equation , we get :
1 = B sin ( ω x 0 + α)
Bsin α = 1 . . . . . . . . . . . . . . . . . . . . ( iv )
Also, velocity ( v ) = ω Bcos (ωt + α)
Substituting the values we get :
π = π B sin α
B sin α = 1 . . . . . . . . . . . . . . . . . . . . ( v )
Adding and squaring equations ( iv ) and ( v ), we get:
B2[ sin2 α + cos2 α] =2
Therefore, B = √ 2
Dividing equation ( iv ) by equation ( v ), we get :
B sin α / B cos α = 1
tan α =1 = tan (π/4)
Therefore, α = π/4 , 5π/4, ......
Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):
(a) sin ωt - cos wt
(b) sin3 ωt
(c) 3 cos (π/4 - 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt
(e) exp (-ω2t2)
A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s. What is the weight of the body?
A simple pendulum of length l and having a bob of mass M is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?
Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?
(a) a = 0.7x
(b) a = -200x2
(c) a = -10x
(d) a = 100x3
A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring constant of the wire.
(Torsional spring constant α is defined by the relation J = -α ø, where J is the restoring couple and ø¸ the angle of twist).
Figure 14.27 depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?
A spring having with a spring constant 1200 N m-1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.
Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.
Figures 14.29 correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.
Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.
Which of the following examples represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?
(a) the rotation of earth about its axis.
(b) motion of an oscillating mercury column in a U-tube.
(c) motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lower most point.
(d) general vibrations of a polyatomic molecule about its equilibrium position.
Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body sliding down an inclined plane,
(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,
(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 x 104 J/g?
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.
A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h-1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s-1.
Precise measurements of physical quantities are a need of science. For example, to ascertain the speed of an aircraft, one must have an accurate method to find its positions at closely separated instants of time. This was the actual motivation behind the discovery of radar in World War II. Think of different examples in modern science where precise measurements of length, time, mass etc. are needed. Also, wherever you can, give a quantitative idea of the precision needed.
You have learnt that a travelling wave in one dimension is represented by a function y = f (x, t) where x and t must appear in the combination x - v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:
(a) ( x - v t )2
(b) log [ x + vt / x0]
(c) 1 / (x + vt)
A constant force acting on a body of mass 3.0 kg changes its speed from 2.0 m s–1 to 3.5 m s–1 in 25 s. The direction of the motion of the body remains unchanged. What is the magnitude and direction of the force?
Fill in the blanks by suitable conversion of units:
(a) 1 kg m2s–2= ....g cm2 s–2
(b) 1 m =..... ly
(c) 3.0 m s–2=.... km h–2
(d) G = 6.67 × 10–11 N m2 (kg)–2=.... (cm)3s–2 g–1.
A student measures the thickness of a human hair by looking at it through a microscope of magnification 100. He makes 20 observations and finds that the average width of the hair in the field of view of the microscope is 3.5 mm. What is the estimate on the thickness of hair?
What amount of heat must be supplied to 2.0 x 10-2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; R = 8.3 J mol-1 K-1.)
A refrigerator is to maintain eatables kept inside at 9°C. If room temperature is 36° C, calculate the coefficient of performance.
A ball is dropped from a height of 90 m on a floor. At each collision with the floor, the ball loses one tenth of its speed. Plot the speed-time graph of its motion between t = 0 to 12 s.