The motion of a body in simple harmonic motion is given by the displacement function,
x (t) = A cos (ωt + φ).
Given that at t = 0, the initial velocity of the body is ω cm/s and its initial position is 1 cm, calculate its initial phase angle and amplitude?
If in place of the cosine function, a sine function is used to represent the simple harmonic motion:
x = B sin (ωt + α),
calculate the body’s amplitude and initial phase considering the initial conditions given above. [Angular frequency of the particle is π/ s]
Given,
Initially, at t = 0:
Displacement, x = 1 cm
Initial velocity, v = ω cm/sec.
Angular frequency, ω = π rad/s
It is given that:
x(t) = A cos( ωt + Φ) . . . . . . . . . . . . . . . . ( i )
1 = A cos( ω x 0 + Φ) = Acos Φ
A cos Φ = 1 . . . . . . . . . . . . . . . . ( ii )
Velocity, v = dx / dt
differentiating equation ( i ) w.r.t ‘t’
v = – Aωsin ( ωt + Φ)
Now at t = 0; v = ω and
=> ω = – Aωsin ( ωt + Φ)
1 = – A sin( ω x 0 + Φ) = -Asin(Φ)
Asin(Φ) = – 1 . . . . . . . . . . . . . . . . . . . . . . . ( iii )
Adding and squaring equations ( ii ) and ( iii ), we get:
A2(sin2 Φ + cos2 Φ) = 1 +1
thus, A =√2
Dividing equation ( iii ) by ( ii ), we get :
tan Φ = -1
Thus, Φ =3π/4 , 7π/4
Now if simple harmonic motion is given as :
x = B sin( ωt + α)
Putting the given values in the equation , we get :
1 = B sin ( ω x 0 + α)
Bsin α = 1 . . . . . . . . . . . . . . . . . . . . ( iv )
Also, velocity ( v ) = ω Bcos (ωt + α)
Substituting the values we get :
π = π B sin α
B sin α = 1 . . . . . . . . . . . . . . . . . . . . ( v )
Adding and squaring equations ( iv ) and ( v ), we get:
B2[ sin2 α + cos2 α] =2
Therefore, B = √ 2
Dividing equation ( iv ) by equation ( v ), we get :
B sin α / B cos α = 1
tan α =1 = tan (π/4)
Therefore, α = π/4 , 5π/4, ......
A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s. What is the weight of the body?
Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):
(a) sin ωt - cos wt
(b) sin3 ωt
(c) 3 cos (π/4 - 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt
(e) exp (-ω2t2)
A simple pendulum of length l and having a bob of mass M is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?
Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?
(a) a = 0.7x
(b) a = -200x2
(c) a = -10x
(d) a = 100x3
A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring constant of the wire.
(Torsional spring constant α is defined by the relation J = -α ø, where J is the restoring couple and ø¸ the angle of twist).
Figure 14.27 depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?
A spring having with a spring constant 1200 N m-1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.
Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.
Figures 14.29 correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.
Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.
A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
(a) at the end A,
(b) at the end B,
(c) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A,
(e) at 3 cm away from A going towards B, and
(f) at 4 cm away from B going towards A.
Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body sliding down an inclined plane,
(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,
(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 x 104 J/g?
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.
Read each statement below carefully and state with reasons and examples, if it is true or false; A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant
(b) with zero speed may have non-zero velocity,
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration mustbe speeding up.
You have learnt that a travelling wave in one dimension is represented by a function y = f (x, t) where x and t must appear in the combination x - v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:
(a) ( x - v t )2
(b) log [ x + vt / x0]
(c) 1 / (x + vt)
Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of S wave is about 4.0 km s-1, and that of P wave is 8.0 km s-1. A seismograph records P and S waves from an earthquake. The first P wave arrives 4 min before the first S wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?
Attempt to formulate your ‘moral’ views on the practice of science. Imagine yourself stumbling upon a discovery, which has great academic interest but is certain to have nothing but dangerous consequences for the human society. How, if at all, will you resolve your dilemma?
An electric heater supplies heat to a system at a rate of 100W. If system performs work at a rate of 75 Joules per second. At what rate is the internal energy increasing?
For the wave described in Exercise 15.8, plot the displacement (y) versus (t) graphs for x = 0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does the oscillatory motion in travelling wave differ from one point to another: amplitude, frequency or phase?
A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is resonantly excited by a 430 Hz source? Will the same source be in resonance with the pipe if both ends are open? (Speed of sound in air is 340 m s-1).
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body sliding down an inclined plane,
(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,
(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
Read each statement below carefully and state, with reasons, if it is true or false:
(a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre
(b) The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point
(c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector
Estimate the average mass density of a sodium atom assuming its size to be about 2.5 Å. (Use the known values of Avogadro’s number and the atomic mass of sodium). Compare it with the density of sodium in its crystalline phase : 970 kg m–3. Are the two densities of the same order of magnitude ? If so, why ?