Class 12 Physics - Chapter Current Electricity NCERT Solutions | Answer the following questions: (a) A

Welcome to the NCERT Solutions for Class 12th Physics - Chapter Current Electricity. This page offers a step-by-step solution to the specific question from Exercise 1, Question 18: answer the following questions a a steady cu....
Question 18

Answer the following questions:

(a) A steady current flows in a metallic conductor of non-uniform cross- section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed?

(b) Is Ohm's law universally applicable for all conducting elements? If not, give examples of elements which do not obey Ohm's law.

(c) A low voltage supply from which one needs high currents must have very low internal resistance. Why?

(d) A high tension (HT) supply of, say, 6 kV must have a very large internal resistance. Why?

Answer

(a) When a steady current flows in a metallic conductor of non-uniform cross-section, the current flowing through the conductor is constant. Current density, electric field, and drift speed are inversely proportional to the area of cross-section. Therefore, they are not constant.

(b) No, Ohm's law is not universally applicable for all conducting elements. Vacuum diode semi-conductor is a non-ohmic conductor. Ohm's law is not valid for it.

(c) According to Ohm's law, the relation for the potential is V = IR

Voltage (V) is directly proportional to current (I).

R is the internal resistance of the source.

If V is low, then R must be very low, so that high current can be drawn from the source.

(d) In order to prohibit the current from exceeding the safety limit, a high tension supply must have a very large internal resistance. If the internal resistance is not large, then the current drawn can exceed the safety limits in case of a short circuit

 

More Questions From Class 12 Physics - Chapter Current Electricity

Popular Questions of Class 12 Physics

Recently Viewed Questions of Class 12 Physics

Write a Comment: