(a) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the n = 1, 2, and 3 levels.
(b) Calculate the orbital period in each of these levels.
(a) Let ν1 be the orbital speed of the electron in a hydrogen atom in the ground state level, n1 = 1. For charge (e) of an electron, ν1 is given by the relation,
ν 1 = e2/n14πϵ0(h/2π) = e2/2ϵ0h
Where, e = 1.6 × 10−19 C
ϵ0 = Permittivity of free space = 8.85 × 10-12 N−1 C2 m−2
h = Planck’s constant = 6.62 × 10−34 Js
∴ ν1 = (1.6x10-19)2/2x8.85x10-12x6.62x10-34 = 0.0218 x 108 = 2.18 x 106 m/s
For level n2 = 2, we can write the relation for the corresponding orbital speed as:
ν2 = e2/n22ϵ0h = (1.6x10-19)2/2x2x8.85x10-12x6.62x10-34 = 1.09 x 106 m/s
And, for n3 = 3, we can write the relation for the corresponding orbital speed as:
ν3 = e2/n32ϵ0h = (1.6x10-19)2/3x2x8.85x10-12x6.62x10-34 = 7.27 x 105 m/s
Hence, the speed of the electron in a hydrogen atom in n = 1, n=2, and n=3 is 2.18 × 10 6 m/s, 1.09 × 10 6 m/s, 7.27 × 10 5 m/s respectively.
(b) Let T 1 be the orbital period of the electron when it is in level n1 = 1.
Orbital period is related to orbital speed as:
T1 = 2πr1/ν 1
Where, r1 = Radius of the orbit
= n12h2ϵ0/πme2
h = Planck’s constant = 6.62 × 10−34 Js
e = Charge on an electron = 1.6 × 10−19 C
ϵ0 = Permittivity of free space = 8.85 × 10−12 N−1 C2 m−2
m = Mass of an electron = 9.1 × 10−31 kg
∴ T1 = 2πr1/ν 1
= (2πx(1)2x(6.62x10-34)2x8.85x10-12)/2.18x106xπx9.1x10-31x(1.6x10-19)2
= 15.27x10-17 = 1.527x10-16 s
For level n 2 = 2, we can write the period as:
T2 = 2πr2/ν 2
Where, r2 = Radius of the electron in n2 = 2
= (n2)2h2ϵ0/πme2
∴ T2 = 2πr2/ν2
= (2πx(2)2x(6.62x10-34)2x8.85x10-12)/1.09 x 106 x π x 9.1 x 10-31 x (1.6 x 10-19)2
= 1.22 x 10-15 s
And, for level n 3 = 3, we can write the period as:
T3 = 2πr3/ν 3
Where, r 3 = Radius of the electron in n 3 = 3
= (n3)2h2ϵ0/πme2
∴ T3 = 2πr3/ν 3
= (2πx(3)2x(6.62x10-34)2x8.85x10-12)/7.27 x 105 x π x 9.1 x 10-31 x (1.6 x 10-19)2
= 4.12 x 10-15 s
Hence, the orbital period in each of these levels is 1.52 × 10 −16 s, 1.22 × 10 −15 s, and 4.12 × 10 −15 s respectively.
The radius of the innermost electron orbit of a hydrogen atom is 5.3 ×10 −11 m. What are the radii of the n = 2 and n =3 orbits?
A hydrogen atom initially in the ground level absorbs a photon, which excites it to the n = 4 level. Determine the wavelength and frequency of the photon.
A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of radiation emitted when the atom makes a transition from the upper level to the lower level?
In accordance with the Bohr’s model, find the quantum number that characterises the earth’s revolution around the sun in an orbit of radius 1.5 × 1011 m with orbital speed 3 × 104 m/s. (Mass of earth = 6.0 × 1024 kg.)
A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?
The ground state energy of hydrogen atom is −13.6 eV. What are the kinetic and potential energies of the electron in this state?
What is the shortest wavelength present in the Paschen series of spectral lines?
Suppose you are given a chance to repeat the alpha-particle scattering experiment using a thin sheet of solid hydrogen in place of the gold foil. (Hydrogen is a solid at temperatures below 14 K.) What results do you expect?
Answer the following questions regarding earth's magnetism:
(a) A vector needs three quantities for its specification. Name the three independent quantities conventionally used to specify the earth's magnetic field.
(b) The angle of dip at a location in southern India is about 18º.
Would you expect a greater or smaller dip angle in Britain?
(c) If you made a map of magnetic field lines at Melbourne in Australia, would the lines seem to go into the ground or come out of the ground?
(d) In which direction would a compass free to move in the vertical plane point to, if located right on the geomagnetic north or south pole?
(e) The earth's field, it is claimed, roughly approximates the field due to a dipole of magnetic moment 8 x 1022 J T-1 located at its centre. Check the order of magnitude of this number in some way.
(f ) Geologists claim that besides the main magnetic N-S poles, there are several local poles on the earth's surface oriented in different directions. How is such a thing possible at all?
(a) Two stable isotopes of lithium 6Li3 and7Li3 have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.01512 u and 7.01600 u, respectively. Find the atomic mass of lithium.
(b) Boron has two stable isotopes, 10B5 and 11B5 . Their respective masses are 10.01294 u and 11.00931 u, and the atomic mass of boron is 10.811 u. Find the abundances of 10B5 and 11B5.
A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?
Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15 A.
(a) Calculate the capacitance and the rate of charge of potential difference between the plates.
(b) Obtain the displacement current across the plates.
(c) Is Kirchhoff’s first rule (junction rule) valid at each plate of the capacitor? Explain.
What is the force between two small charged spheres having charges of 2 x 10-7 C and 3 x 10-7 C placed 30 cm apart in air?
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of
(a) reflected, and
(b) refracted light? Refractive index of water is 1.33.
A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?
Two point charges qA = 3 μC and qB = −3 μC are located 20 cm apart in vacuum.
(a) What is the electric field at the midpoint O of the line AB joining the two charges?
(b) If a negative test charge of magnitude 1.5 × 10−9 C is placed at this point, what is the force experienced by the test charge?
A magnetic field of 100 G (1 G = 10-4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10-3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m-1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic
Explain how Corpuscular theory predicts the speed of light in a medium, say, water, to be greater than the speed of light in vacuum. Is the prediction confirmed by experimental determination of the speed of light in water? If not, which alternative picture of light is consistent with experiment?
A bar magnet of magnetic moment 1.5 J T-1 lies aligned with the direction of a uniform magnetic field of 0.22 T.
(a) What is the amount of work required by an external torque to turn the magnet so as to align its magnetic moment: (i) normal to the field direction, (ii) opposite to the field direction?
(b) What is the torque on the magnet in cases (i) and (ii)?
A sample of paramagnetic salt contains 2.0 x 1024 atomic dipoles each of dipole moment 1.5 x 10-23 J T-1. The sample is placed under a homogeneous magnetic field of 0.64 T, and cooled to a temperature of 4.2 K. The degree of magnetic saturation achieved is equal to 15%. What is the total dipole moment of the sample for a magnetic field of 0.98 T and a temperature of 2.8 K? (Assume Curie's law)
A point charge causes an electric flux of −1.0 × 103 Nm2/C to pass through a spherical Gaussian surface of 10.0 cm radius centered on the charge.
(a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
(b) What is the value of the point charge?
A parallel plate capacitor with air between the plates has a capacitance of 8 pF (1pF = 10-12 F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?
Check that the ratio ke2/G memp is dimensionless. Look up a Table of Physical Constants and determine the value of this ratio. What does the ratio signify?
Two charges -q and +q are located at points (0, 0, - a) and (0, 0, a), respectively.
(a) What is the electrostatic potential at the points?
(b) Obtain the dependence of potential on the distance r of a point from the origin when r/a >> 1.
(c) How much work is done in moving a small test charge from the point (5, 0, 0) to (-7, 0, 0) along the x-axis? Does the answer change if the path of the test charge between the same points is not along the x-axis?