The vertices of ΔABC are A (3, 5, −4), B (−1, 1, 2), and C (−5, −5, −2).
The vertices of ΔABC are A (3, 5, −4), B (−1, 1, 2), and C (−5, −5, −2).
The direction ratios of side AB are (−1 − 3), (1 − 5), and (2 − (−4)) i.e., −4, −4, and 6.
Therefore, the direction cosines of AB are
The direction ratios of BC are (−5 − (−1)), (−5 − 1), and (−2 − 2) i.e., −4, −6, and −4.
Therefore, the direction cosines of BC are
The direction ratios of CA are (−5 − 3), (−5 − 5), and (−2 − (−4)) i.e., −8, −10, and 2.
Therefore, the direction cosines of AC are
Find the direction cosines of a line which makes equal angles with the coordinate axes.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Show that the Signum Function f : R → R, given by
is neither one-one nor onto.
\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
In Figure, identify the following vectors.
(i) Coinitial (ii) Equal (iii) Collinear but not equal
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).