(i) {3, 6, 9, 12} = {x: x = 3n, n∈ N and 1 ≤ n ≤ 4}
(ii) {2, 4, 8, 16, 32}
It can be seen that 2 = 21, 4 = 22, 8 = 23, 16 = 24, and 32 = 25.
∴ {2, 4, 8, 16, 32} = {x: x = 2n, n∈ N and 1 ≤ n ≤ 5}
(iii) {5, 25, 125, 625}
It can be seen that 5 = 51, 25 = 52, 125 = 53, and 625 = 54.
∴ {5, 25, 125, 625} = {x: x = 5n, n∈N and 1 ≤ n ≤ 4}
(iv) {2, 4, 6 …}
It is a set of all even natural numbers.
∴ {2, 4, 6 …} = {x: x is an even natural number}
(v) {1, 4, 9 … 100}
It can be seen that 1 = 12, 4 = 22, 9 = 32 …100 = 102.
∴ {1, 4, 9… 100} = {x: x = n2, n∈N and 1 ≤ n ≤ 10}
Solve 24x < 100, when
(i) x is a natural number. (ii) x is an integer.
Draw a quadrilateral in the Cartesian plane, whose vertices are (– 4, 5), (0, 7), (5, – 5) and (– 4, –2). Also, find its area.
A point is on the x-axis. What are its y-coordinates and z-coordinates?
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that
(i) repetition of the digits is allowed?
(ii) repetition of the digits is not allowed?
Find the equation of the circle with centre (0, 2) and radius 2
Describe the sample space for the indicated experiment: A coin is tossed three times.
Which of the following sentences are statements? Give reasons for your answer.
(i) There are 35 days in a month.
(ii) Mathematics is difficult.
(iii) The sum of 5 and 7 is greater than 10.
(iv) The square of a number is an even number.
(v) The sides of a quadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (–1) and 8 is 8.
(viii) The sum of all interior angles of a triangle is 180°.
(ix) Today is a windy day.
(x) All real numbers are complex numbers.
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A×B).
The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)thnumbers is 5:9. Find the value of m.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If the pth, qth and rth terms of a G.P. are a, b and c, respectively. Prove that aq-rbr-pcp-q=1
The sum of first three terms of a G.P. is and their product is 1. Find the common ratio and the terms.
Show that the products of the corresponding terms of the sequences a,ar,ar2, ...arn-1 and A, AR, AR2, ,,,ARn-1 form a G.P, and find the common ratio.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Which of the following sentences are statements? Give reasons for your answer.
(i) There are 35 days in a month.
(ii) Mathematics is difficult.
(iii) The sum of 5 and 7 is greater than 10.
(iv) The square of a number is an even number.
(v) The sides of a quadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (–1) and 8 is 8.
(viii) The sum of all interior angles of a triangle is 180°.
(ix) Today is a windy day.
(x) All real numbers are complex numbers.
Very nice
Thank Q soo much