Class 11 Mathematics - Chapter Sequence and Series NCERT Solutions | Find the sum of odd integers from 1 to 2

Welcome to the NCERT Solutions for Class 11th Mathematics - Chapter Sequence and Series. This page offers a step-by-step solution to the specific question from Excercise ".$ex_no." , Question 1: find the sum of odd integers from 1 to 2001....
Question 1

Find the sum of odd integers from 1 to 2001.

Answer
The odd integers from 1 to 2001 are 1, 3, 5, …1999, 2001.
 
This sequence forms an A.P.
 
Here, first term, a = 1
 
Common difference, d = 2
 
Here,
 
\begin{align} a + (n - 1)d = 2001 \end{align}
 
\begin{align} => 1 + (n - 1)(2) = 2001 \end{align}
 
\begin{align} => 2n -2 = 2000 \end{align}
 
\begin{align} => n = 1001 \end{align}
 
\begin{align} S_n = \frac {n}{2}\left[2a + (n -1)d\right]\end{align}
 
\begin{align} \therefore S_n = \frac {1001}{2}\left[2 × 1 + (1001 -1)×2\right]\end{align}
 
\begin{align} = \frac {1001}{2}\left[2 + 1000×2\right]\end{align}
 
\begin{align} = \frac {1001}{2} × 2002\end{align}
 
\begin{align} =1001 × 1001 \end{align}
 
\begin{align} = 1002001 \end{align}
 
Thus, the sum of odd numbers from 1 to 2001 is 1002001.
 

Popular Questions of Class 11 Mathematics

1 Comment(s) on this Question

Write a Comment: