Class 11 Mathematics - Chapter Sequence and Series NCERT Solutions | The sums of n terms of two arithmetic pr

Welcome to the NCERT Solutions for Class 11th Mathematics - Chapter Sequence and Series. This page offers a step-by-step solution to the specific question from Excercise 2 , Question 9: the sums of n terms of two arithmetic progressions....
Question 9

The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms.

Answer

Let a1a2, and d1d2 be the first terms and the common difference of the first and second arithmetic progression respectively.

According to the given condition,

 

\begin{align}  \frac{Sum \;of \;n \;terms \;of \;first\; A.P.}{Sum\; of \;n\; terms \;of \;second \;A.P.} = \frac{5n+4}{9n+6} \end{align}

\begin{align}  ⇒\frac{\frac{n}{2}\left[2a_1 + (n-1)d_1\right]}{\frac{n}{2}\left[2a_2 + (n-1)d_2\right]} = \frac{5n+4}{9n+6} \end{align}

\begin{align}  ⇒\frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{5n+4}{9n+6} \;\;\;\;...(1)\end{align}

Substituting n = 35 in (1), we obtain

\begin{align}  ⇒\frac{2a_1 + 34d_1}{2a_2 + 34d_2} = \frac{5(35)+4}{9(35)+6} \end{align}

\begin{align}  ⇒\frac{a_1 + 17d_1}{a_2 + 17d_2} = \frac{179}{321} \;\;\;\;...(2)\end{align}

\begin{align}  \frac{18^{th} \;term \;of\; first\; A.P.}{18^{th} \;term \;of\; second\; A.P.}=\frac{a_1 + 17d_1}{a_2 + 17d_2}  \;\;\;\;...(3)\end{align}

From (2) and (3), we obtain

\begin{align}  \frac{18^{th} \;term \;of\; first\; A.P.}{18^{th} \;term \;of\; second\; A.P.}=\frac{179}{321}\end{align}

Thus, the ratio of 18th term of both the A.P.s is 179: 321.

 

Popular Questions of Class 11 Mathematics

5 Comment(s) on this Question

Write a Comment: