Class 11 Mathematics - Chapter Sequence and Series NCERT Solutions | If the sum of a certain number of terms

Welcome to the NCERT Solutions for Class 11th Mathematics - Chapter Sequence and Series. This page offers a step-by-step solution to the specific question from Excercise 2 , Question 6: if the sum of a certain number of terms of the a p....
Question 6

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term

Answer

Let the sum of n terms of the given A.P. be 116.

\begin{align}  S_n=\frac{n}{2}\left[2a + (n-1)d\right] \end{align}

Here, a = 25 and d = 22 – 25 = – 3

\begin{align}  \therefore S_n=\frac{n}{2}\left[2 × 25 + (n-1)(-3)\right] \end{align}

\begin{align}  ⇒ 116=\frac{n}{2}\left[50 -3n +3\right] \end{align}

\begin{align}  ⇒ 232=n(53-3n)=53n -3n^2 \end{align}

\begin{align}  ⇒ 3n^2 -53n + 232 =0\end{align}

\begin{align}  ⇒ 3n^2 -24n -29n + 232 =0\end{align}

\begin{align}  ⇒ 3n(n-8) -29(n-8) =0\end{align}

\begin{align}  ⇒ (n-8)(3n-29) =0\end{align}

\begin{align}  ⇒ n=8 \;or\;n=\frac{29}{3} \end{align}

However, n cannot be equal to \begin{align}  \frac{29}{3}. \end{align} Therefore, n = 8

\begin{align}  \therefore a_8 = Last \; Term = a + (n-1)d= 25 + (8-1)(-3) \end{align}

\begin{align}  = 25 + (7)(-3)=25-21 \end{align}

\begin{align}  = 4 \end{align}

Thus, the last term of the A.P. is 4.

 

Popular Questions of Class 11 Mathematics

Recently Viewed Questions of Class 11 Mathematics

Write a Comment: