A = {1, 2, 3, 4, 5}
R = { (a,b) ; |a – b| is even}
It is clear that for any element a ∈A, we have |a -a| = 0(which is even).
∴R is reflexive.
Let (a, b) ∈ R.
=> |a –b| is even.
=> |- (a –b)| = |b - a| is also even.
=> (b, a) ∈ R is even.
A = {1, 2, 3, 4, 5}
R = { (a, b) : | a – b| is even}
It is clear that for any element a ∈A, we have |a - a | = 0 (which is even).
∴R is reflexive.
Let (a, b) ∈ R.
⇒ |a –b| is even.
⇒ |- (a –b)| = |b - a| is also even.
⇒ (b, a) ∈ R is even.
∴R is symmetric.
Now, let (a, b) ∈ R and (b, c) ∈ R.
⇒ |a –b| is even and |(b –c)| is even.
⇒ (a – b) is even and (b –c ) is even.
⇒ (a –c ) = (a – b) + (b – c ) is even. [ Sum of two even integers is even]
⇒ |a – c | is even.
⇒ (a, c) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
Now, all elements of the set {1, 3, 5} are related to each other as all the elements of this subset are odd. Thus, the modulus of the difference between any two elements will be even.
Similarly, all elements of the set {2, 4} are related to each other as all the elements of this subset are even.
Also, no element of the subset {1, 3, 5} can be related to any element of {2, 4} as all elements of {1, 3, 5} are odd and all elements of {2, 4} are even. Thus, the modulus of the difference between the two elements (from each of these two subsets) will not be even.
∴R is symmetric.
Now, let (a, b) ∈ R and (b, c) ∈ R.
⇒ |a –b| is even and |(b –c)| is even.
⇒ (a – b) is even and (b –c ) is even.
⇒ (a –c ) = (a – b) + (b – c ) is even. [ Sum of two even integers is even]
⇒ |a – c | is even.
⇒ (a, c) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
Now, all elements of the set {1, 3, 5} are related to each other as all the elements of this subset are odd. Thus, the modulus of the difference between any two elements will be even.
Similarly, all elements of the set {2, 4} are related to each other as all the elements of this subset are even.
Also, no element of the subset {1, 3, 5} can be related to any element of {2, 4} as all elements of {1, 3, 5} are odd and all elements of {2, 4} are even. Thus, the modulus of the difference between the two elements (from each of these two subsets) will not be even.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Represent graphically a displacement of 40 km, 30° east of north.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0