R = {(a, b): a ≤ b3}
It is observed that
\begin{align} \left(\frac{1}{2},\frac{1}{2}\right) ∉ R , as \frac{1}{2}>\left(\frac{1}{2}\right)^3 = \frac{1}{8}\end{align}
∴ R is not reflexive.
Now,
(1, 2) ∈ R (as 1 < 23 = 8)
But,
(2, 1) ∉ R (as 23 > 1)
∴ R is not symmetric.
We have
\begin{align} \left(3,\frac{3}{2}\right),\left(\frac{3}{2},\frac{6}{5}\right) ∉ R , as 3>\left(\frac{3}{2}\right)^3 and \frac{3}{2}<\left(\frac{6}{5}\right)^3 \end{align}
But
\begin{align} \left(3,\frac{6}{5}\right) ∉ R , as 3>\left(\frac{6}{5}\right)^3 \end{align}
∴ R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Determine order and degree(if defined) of differential equation (ym)2 + (yn)3 + (y')4 + y5 =0