R = {(a, b): a ≤ b3}
It is observed that
\begin{align} \left(\frac{1}{2},\frac{1}{2}\right) ∉ R , as \frac{1}{2}>\left(\frac{1}{2}\right)^3 = \frac{1}{8}\end{align}
∴ R is not reflexive.
Now,
(1, 2) ∈ R (as 1 < 23 = 8)
But,
(2, 1) ∉ R (as 23 > 1)
∴ R is not symmetric.
We have
\begin{align} \left(3,\frac{3}{2}\right),\left(\frac{3}{2},\frac{6}{5}\right) ∉ R , as 3>\left(\frac{3}{2}\right)^3 and \frac{3}{2}<\left(\frac{6}{5}\right)^3 \end{align}
But
\begin{align} \left(3,\frac{6}{5}\right) ∉ R , as 3>\left(\frac{6}{5}\right)^3 \end{align}
∴ R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force
(iv) velocity (v) work done
Represent graphically a displacement of 40 km, 30° east of north.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
The total cost C (x) in Rupees associated with the production of x units of an item is given by
C(X) = 0.007 x3 - 0.003x2 + 15x + 4000
Find the marginal cost when 17 units are produced.
Determine order and degree(if defined) of differential equation y' + 5y = 0
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?