Class 12 Mathematics - Chapter Relations and Functions NCERT Solutions | Given an example of a relation. Which is

Welcome to the NCERT Solutions for Class 12th Mathematics - Chapter Relations and Functions. This page offers a step-by-step solution to the specific question from Excercise ".$ex_no." , Question 10: given an example of a relation which is i symme....
Question 10

Given an example of a relation. Which is
(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.

Answer

(i) Let A = {5, 6, 7}.

Define a relation R on A as R = {(5, 6), (6, 5)}.

Relation R is not reflexive as (5, 5), (6, 6), (7, 7) ∉ R.

Now, as (5, 6) ∈ R and also (6, 5) ∈ R, R is symmetric.

=> (5, 6), (6, 5) ∈ R, but (5, 5) ∉ R

∴R is not transitive.

Hence, relation R is symmetric but not reflexive or transitive.

(ii) Consider a relation R in R defined as:

R = {(a, b): a < b}

For any a ∈ R, we have (a, a) ∉ R since a cannot be strictly less than a itself. In fact, a = a.

R is not reflexive.

Now,

(1, 2) ∈ R (as 1 < 2)

But, 2 is not less than 1.

(2, 1) ∉ R

R is not symmetric.

Now, let (a, b), (b, c) ∈ R.

a < b and b < c

a < c

⇒ (a, c) ∈ R

∴ R is transitive.

Hence, relation R is transitive but not reflexive and symmetric.

(iii) Let A = {4, 6, 8}.

Define a relation R on A as:

A = {(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)}

Relation R is reflexive since for every aA, (a, a) ∈R i.e., (4, 4), (6, 6), (8, 8)} ∈ R.

Relation R is symmetric since (a, b) ∈ R ⇒ (b, a) ∈ R for all a, b ∈ R.

Relation R is not transitive since (4, 6), (6, 8) ∈ R, but (4, 8) ∉ R.

Hence, relation R is reflexive and symmetric but not transitive.

(iv) Define a relation R in R as:

R = {a, b): a3b3}

Clearly (a, a) ∈ R as a3 = a3.

∴ R is reflexive.

Now,

(2, 1) ∈ R (as 23 ≥ 13)

But,

(1, 2) ∉ R (as 13 < 23)

R is not symmetric.

Now,

Let (a, b), (b, c) ∈ R.

a3b3 and b3c3

a3c3

⇒ (a, c) ∈ R

∴ R is transitive.

Hence, relation R is reflexive and transitive but not symmetric.

(v)  Let A = {−5, −6}.

Define a relation R on A as:

R = {(−5, −6), (−6, −5), (−5, −5)}

Relation R is not reflexive as (−6, −6) ∉ R.

Relation R is symmetric as (−5, −6) ∈ R and (−6, −5}∈R.

It is seen that (−5, −6), (−6, −5) ∈ R. Also, (−5, −5) ∈ R.

∴ The relation R is transitive.

Hence, relation R is symmetric and transitive but not reflexive.

More Questions From Class 12 Mathematics - Chapter Relations and Functions

6 Comment(s) on this Question

Write a Comment: