Consider f : {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f –1 and show that (f –1)–1 = f.
Function f: {1, 2, 3} → {a, b, c} is given by,
f(1) = a, f(2) = b, and f(3) = c
If we define g: {a, b, c} → {1, 2, 3} as g(a) = 1, g(b) = 2, g(c) = 3, then we have:
gof = Ix and fog = Iy where X = {1, 2, 3} and Y= {a, b, c}.
Thus, the inverse of f exists and f - 1 = g.
∴f - 1: {a, b, c} → {1, 2, 3} is given by,
f - 1(a) = 1, f - 1(b) = 2, f-1(c) = 3
Let us now find the inverse of f - 1 i.e., find the inverse of g.
If we define h: {1, 2, 3} → {a, b, c} as
h(1) = a, h(2) = b, h(3) = c, then we have:
∴, where X = {1, 2, 3} and Y = {a, b, c}.
Thus, the inverse of g exists and g - 1 = h ⇒ (f - 1) - 1 = h.
It can be noted that h = f.
Hence, (f - 1) - 1 = f.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Represent graphically a displacement of 40 km, 30° east of north.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0