Show that f : [–1, 1] → R, given by is one-one. Find the inverse of the function f : [–1, 1] → Range f.
(Hint: For y ∈ Range f, y =, for some x in [ - 1, 1], i.e.,
)
f: [ - 1, 1] → R is given as
Let f(x) = f(y).
∴ f is a one-one function.
It is clear that f: [ - 1, 1] → Range f is onto.
∴ f: [ - 1, 1]→ Range f is one-one and onto and therefore, the inverse of the function:
f: [ - 1, 1] → Range f exists.
Let g: Range f → [ - 1, 1] be the inverse of f.
Let y be an arbitrary element of range f.
Since f: [ - 1, 1] → Range f is onto, we have:
Now, let us define g: Range f → [ - 1, 1] as
∴gof =I[-1, 1]and fog = IRange f
∴ f - 1 = g
⇒
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
In Figure, identify the following vectors.
(i) Coinitial (ii) Equal (iii) Collinear but not equal
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
WHERE IS THE RANGE OF THE FUNCTION