In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
(i) f: R → R is defined as f(x) = 3 - 4x.
.
∴ f is one-one.
For any real number (y) in R, there existsin R such that
∴f is onto.
Hence, f is bijective.
(ii) f: R → R is defined as
.
.
∴does not imply that x1 = x2
For instance,
∴ f is not one-one.
Consider an element - 2 in co-domain R.
It is seen thatis positive for all x ∈ R.
Thus, there does not exist any x in domain R such that f(x) = - 2.
∴ f is not onto.
Hence, f is neither one-one nor onto.
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Determine order and degree(if defined) of differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
A particle moves along the curve 6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
y = ex +1 : yn -y' = 0