Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
(i) f: N → N is given by,
f(x) = x2
It is seen that for x, y ∈N, f(x) = f(y) ⇒ x2 = y2 ⇒ x = y.
∴f is injective.
Now, 2 ∈ N. But, there does not exist any x in N such that f(x) = x2 = 2.
∴ f is not surjective.
Hence, function f is injective but not surjective.
(ii) f: Z → Z is given by,
f(x) = x2
It is seen that f(-1) = f(1) = 1, but -1 ≠ 1.
∴ f is not injective.
Now,-2 ∈ Z. But, there does not exist any element x ∈Z such that f(x) = x2 = -2.
∴ f is not surjective.
Hence, function f is neither injective nor surjective.
(iii) f: R → R is given by,
f(x) = x2
It is seen that f(-1) = f(1) = 1, but -1 ≠ 1.
∴ f is not injective.
Now,-2 ∈ R. But, there does not exist any element x ∈ R such that f(x) = x2 = -2.
∴ f is not surjective.
Hence, function f is neither injective nor surjective.
(iv) f: N → N given by,
f(x) = x3
It is seen that for x, y ∈N, f(x) = f(y) ⇒ x3 = y3 ⇒ x = y.
∴f is injective.
Now, 2 ∈ N. But, there does not exist any element x in domain N such that f(x) = x3 = 2.
∴ f is not surjective
Hence, function f is injective but not surjective.
(v) f: Z → Z is given by,
f(x) = x3
It is seen that for x, y ∈ Z, f(x) = f(y) ⇒ x3 = y3 ⇒ x = y.
∴ f is injective.
Now, 2 ∈ Z. But, there does not exist any element x in domain Z such that f(x) = x3 = 2.
∴ f is not surjective.
Hence, function f is injective but not surjective.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is
(A) 116 (B) 96 (C) 90 (D) 126
Determine order and degree(if defined) of differential equation y' + 5y = 0
Determine order and degree(if defined) of differential equation \begin{align}\left(\frac{ds}{dt}\right)^4\;+\;3s\frac{d^2s}{dt^2}\;=\;0\end{align}
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
Classify the following measures as scalars and vectors.
(i) 10 kg (ii) 2 metres north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2
A particle moves along the curve 6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.