An experiment consists of tossing a coin and then throwing it second time if a head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the sample space.
A coin has two faces: head (H) and tail (T).
A die has six faces that are numbered from 1 to 6, with one number on each face.
Thus, in the given experiment, the sample space is given by
S = {HH, HT, T1, T2, T3, T4, T5, T6}
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?
A die is thrown. Describe the following events:
(i) A: a number less than 7 (ii) B: a number greater than 7 (iii) C: a multiple of 3
(iv) D: a number less than 4 (v) E: an even number greater than 4 (vi) F: a number not less than 3
Also find A ∪ B, A ∩ B, B ∪ C, E ∩ F, D ∩ E, A – C, D – E, E ∩ F’, F’
Three coins are tossed. Describe
(i) Two events which are mutually exclusive.
(ii) Three events which are mutually exclusive and exhaustive.
(iii) Two events, which are not mutually exclusive.
(iv) Two events which are mutually exclusive but not exhaustive.
(v) Three events which are mutually exclusive but not exhaustive.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
One die of red colour, one of white colour and one of blue colour are placed in a bag. One die is selected at random and rolled, its colour and the number on its uppermost face is noted. Describe the sample space.
A die is rolled. Let E be the event “die shows 4” and F be the event “die shows even number”. Are E and F mutually exclusive?
Describe the sample space for the indicated experiment: A die is thrown two times.
Three coins are tossed once. Let A denote the event ‘three heads show”, B denote the event “two heads and one tail show”. C denote the event “three tails show” and D denote the event ‘a head shows on the first coin”. Which events are
(i) mutually exclusive? (ii) simple? (iii) compound?
Solve 24x < 100, when
(i) x is a natural number. (ii) x is an integer.
Draw a quadrilateral in the Cartesian plane, whose vertices are (– 4, 5), (0, 7), (5, – 5) and (– 4, –2). Also, find its area.
A point is on the x-axis. What are its y-coordinates and z-coordinates?
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that
(i) repetition of the digits is allowed?
(ii) repetition of the digits is not allowed?
Find the equation of the circle with centre (0, 2) and radius 2
Which of the following sentences are statements? Give reasons for your answer.
(i) There are 35 days in a month.
(ii) Mathematics is difficult.
(iii) The sum of 5 and 7 is greater than 10.
(iv) The square of a number is an even number.
(v) The sides of a quadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (–1) and 8 is 8.
(viii) The sum of all interior angles of a triangle is 180°.
(ix) Today is a windy day.
(x) All real numbers are complex numbers.
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A×B).
The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
A point is in the XZ-plane. What can you say about its y-coordinate?
Find the sum to n terms in the geometric progression 1,-a, a2,-a3, ... (if a ≠ -1)
The sum of first three terms of a G.P. is and their product is 1. Find the common ratio and the terms.
For what values of x, the numbers are in G.P?
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)thnumbers is 5:9. Find the value of m.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.