Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?
Each signal requires the use of 2 flags.
There will be as many flags as there are ways of filling in 2 vacant places
in succession by the given 5 flags of different colours.
The upper vacant place can be filled in 5 different ways by any one of the 5 flags following which, the lower vacant place can be filled in 4 different ways by any one of the remaining 4 different flags.
Thus, by multiplication principle, the number of different signals that can be generated is 5 × 4 = 20
How many 4-letter code can be formed using the first 10 letters of the English alphabet, if no letter can be repeated?
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that
(i) repetition of the digits is allowed?
(ii) repetition of the digits is not allowed?
A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?
How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated?
How many 5–digit telephone numbers can be constructed using the digits 0 to 9 if each number starts with 67 and no digit appears more than once?
Solve 24x < 100, when
(i) x is a natural number. (ii) x is an integer.
Draw a quadrilateral in the Cartesian plane, whose vertices are (– 4, 5), (0, 7), (5, – 5) and (– 4, –2). Also, find its area.
A point is on the x-axis. What are its y-coordinates and z-coordinates?
Find the equation of the circle with centre (0, 2) and radius 2
Describe the sample space for the indicated experiment: A coin is tossed three times.
Which of the following sentences are statements? Give reasons for your answer.
(i) There are 35 days in a month.
(ii) Mathematics is difficult.
(iii) The sum of 5 and 7 is greater than 10.
(iv) The square of a number is an even number.
(v) The sides of a quadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (–1) and 8 is 8.
(viii) The sum of all interior angles of a triangle is 180°.
(ix) Today is a windy day.
(x) All real numbers are complex numbers.
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A×B).
The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
A point is in the XZ-plane. What can you say about its y-coordinate?
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nth term is (2m – 1): (2n – 1).
Find the 20th and nthterms of the G.P.
Which term of the following sequences:
For what values of x, the numbers are in G.P?
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
Name the octants in which the following points lie:
(1, 2, 3), (4, –2, 3), (4, –2, –5), (4, 2, –5), (–4, 2, –5), (–4, 2, 5), (–3, –1, 6), (2, –4, –7)
The sum of first three terms of a G.P. is and their product is 1. Find the common ratio and the terms.
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.