How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that
(i) repetition of the digits is allowed?
(ii) repetition of the digits is not allowed?
(i)
There will be as many ways as there are ways of filling 3 vacant places
in succession by the given five digits. In this case, repetition of digits is allowed. Therefore, the units place can be filled in by any of the given five digits. Similarly, tens and hundreds digits can be filled in by any of the given five digits.
Thus, by the multiplication principle, the number of ways in which three-digit numbers can be formed from the given digits is 5 × 5 × 5 = 125
(ii)
In this case, repetition of digits is not allowed. Here, if units place is filled in first, then it can be filled by any of the given five digits. Therefore, the number of ways of filling the units place of the three-digit number is 5.
Then, the tens place can be filled with any of the remaining four digits and the hundreds place can be filled with any of the remaining three digits.
Thus, by the multiplication principle, the number of ways in which three-digit numbers can be formed without repeating the given digits is 5 × 4 × 3 = 60
How many 4-letter code can be formed using the first 10 letters of the English alphabet, if no letter can be repeated?
A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?
Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?
How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated?
How many 5–digit telephone numbers can be constructed using the digits 0 to 9 if each number starts with 67 and no digit appears more than once?
Solve 24x < 100, when
(i) x is a natural number. (ii) x is an integer.
Draw a quadrilateral in the Cartesian plane, whose vertices are (– 4, 5), (0, 7), (5, – 5) and (– 4, –2). Also, find its area.
A point is on the x-axis. What are its y-coordinates and z-coordinates?
Find the equation of the circle with centre (0, 2) and radius 2
Describe the sample space for the indicated experiment: A coin is tossed three times.
Which of the following sentences are statements? Give reasons for your answer.
(i) There are 35 days in a month.
(ii) Mathematics is difficult.
(iii) The sum of 5 and 7 is greater than 10.
(iv) The square of a number is an even number.
(v) The sides of a quadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (–1) and 8 is 8.
(viii) The sum of all interior angles of a triangle is 180°.
(ix) Today is a windy day.
(x) All real numbers are complex numbers.
If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A×B).
The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
A point is in the XZ-plane. What can you say about its y-coordinate?
Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015 …
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Prove the following by using the principle of mathematical induction for all n ∈ N:
n (n + 1) (n + 5) is a multiple of 3.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.