\begin{align} Let\;\; cos^{-1}\left(-\frac{1}{\sqrt2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{\sqrt2} = - cos\left(\frac{\pi}{4}\right)=cos\left(\pi - \frac{\pi}{4}\right) = cos\left(\frac{3\pi}{4}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right) is \frac{3\pi}{4}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
Determine order and degree(if defined) of differential y' + y =ex
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Letbe a function defined as
. The inverse of f is map g: Range
(A)
(B)
(C)
(D)
Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force
(iv) velocity (v) work done
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.