\begin{align} Let \;\; tan^{-1}\left(-1\right)=y. \;\;Then,\;\; tan y = -1 = -tan\left(\frac{\pi}{4}\right)= tan\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of tan−1 is
\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{4}\right) = - 1\end{align}
Therefore, the principal value of
\begin{align} tan^{-1}\left(- 1\right) is -\frac{\pi}{4}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with .
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is
(A) 116 (B) 96 (C) 90 (D) 126
Determine order and degree(if defined) of differential equation y' + 5y = 0
Determine order and degree(if defined) of differential equation \begin{align}\left(\frac{ds}{dt}\right)^4\;+\;3s\frac{d^2s}{dt^2}\;=\;0\end{align}
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?