\begin{align} Let \;\; tan^{-1}\left(-1\right)=y. \;\;Then,\;\; tan y = -1 = -tan\left(\frac{\pi}{4}\right)= tan\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of tan−1 is
\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{4}\right) = - 1\end{align}
Therefore, the principal value of
\begin{align} tan^{-1}\left(- 1\right) is -\frac{\pi}{4}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Determine order and degree(if defined) of differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with .
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Determine order and degree(if defined) of differential equation y' + 5y = 0
Let A = R – {3} and B = R – {1}. Consider the function f : A → B defined by
y = cosx + C : y' + sinx = 0
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.