\begin{align} Let \;\; cosec^{-1}\left({2}\right)=y \;\;Then\;\; cosec y = 2 = cosec\left(\frac{\pi}{6}\right)\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
\begin{align} y= \sqrt{1+x^2} : y^{'}=\frac{xy}{1+x^2}\end{align}
Determine order and degree(if defined) of differential equation \begin{align}\left(\frac{ds}{dt}\right)^4\;+\;3s\frac{d^2s}{dt^2}\;=\;0\end{align}
y = ex +1 : yn -y' = 0
Determine order and degree(if defined) of differential equation \begin{align}\frac{d^2y}{dx^2}=\cos3x + sin3x\end{align}
Let A = R – {3} and B = R – {1}. Consider the function f : A → B defined by
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.