\begin{align} Let\;\; cos^{-1}\left(\frac{\sqrt3}{2}\right)=y, \;\;Then,\;\; cos y = \frac{\sqrt3}{2} = cos\left(\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{\pi}{6}\right) = \frac{\sqrt3}{2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(\frac{\sqrt3}{2}\right) is \frac{\pi}{6}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Represent graphically a displacement of 40 km, 30° east of north.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.