\begin{align} sin^{-1}\left(-\frac{1}{2}\right)=y \;\;Then\;\; sin y = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of sin−1 is
\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] and \;\;sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}\end{align}
Therefore, the principal value of
\begin{align} sin^{-1}\left(-\frac{1}{2}\right) is -\frac{\pi}{6}\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
The total cost C (x) in Rupees associated with the production of x units of an item is given by
C(X) = 0.007 x3 - 0.003x2 + 15x + 4000
Find the marginal cost when 17 units are produced.
A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Show that the function f : R* → R* defined by f(x) = 1/x is one-one and onto,where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R* ?
Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
Why not show full solutions?