The anti derivative of sin 2x is a function of x whose derivative is sin 2x.
It is known that,
\begin{align} \frac {d}{dx} (cos 2x) = 2 sin2x \end{align}
⇒ \begin{align} sin 2x =-\frac {1}{2} \frac {d}{dx}(cos 2x) \end{align}
∴ \begin{align} sin 2x = \frac {d}{dx}\left(-\frac {1}{2}cos 2x\right) \end{align}
Therefore, the anti derivative of sin2x is
\begin{align} sin 2x \;is -\frac {1}{2}cos 2x \end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
y = x2 + 2x + C : y' - 2x - 2 = 0
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
If f: R → R be given by f(x) = , then fof(x) is
(A)
(B) x3
(C) x
(D) (3 – x3).