\begin{align} \int \frac {sec^2 x}{Coses^2 x} . dx\end{align}
\begin{align} =\int \left(\frac{\frac {1}{Cos^2 x}}{\frac{1}{sin^2 x}}\right) . dx\end{align}
\begin{align} =\int \left(\frac{Sin^2x}{Cos^2x}\right) . dx\end{align}
\begin{align} =\int tan^2 x . dx\end{align}
\begin{align} =\int \left(sec^2x - 1\right) . dx\end{align}
\begin{align} =\int sec^2x . dx - \int 1. dx\end{align}
\begin{align} = tanx - x + C\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Show that the function f : R* → R* defined by f(x) = 1/x is one-one and onto,where R* is the set of all non-zero real numbers. Is the result true, if the domain R* is replaced by N with co-domain being same as R* ?
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Determine order and degree(if defined) of differential equation y' + 5y = 0
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Let f : X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = 1Y(y) = fog2(y). Use one-one ness of f).
If f: R → R be given by f(x) = , then fof(x) is
(A)
(B) x3
(C) x
(D) (3 – x3).
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?