\begin{align} \int \frac{x^3 - x^2 + x - 1}{x-1} . dx\end{align}
On dividing, we obtain
\begin{align} =\int \left({x^2 + 1}\right) . dx \end{align}
\begin{align} =\int {x^2} . dx + \int 1 .dx \end{align}
\begin{align} =\frac {x^3}{3} + x + C \end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Find gof and fog, if
(i) f(x) = | x | and g(x) = | 5x – 2 |
(ii) f(x) = 8x3 and g(x) = x1/3 .
If f(x) = , show that fof(x) = x, for all x ≠ 2/3. What is the inverse of f ?
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with .
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.