\begin{align} \int \frac{x^3 + 3x + 4}{\sqrt{x}} . dx\end{align}
\begin{align} =\int \left(x^\frac{5}{2} + 3x^\frac{1}{2} + 4x^\frac{1}{2}\right) . dx\end{align}
\begin{align} =\frac{\left(x^{\displaystyle\frac72}\right)}{\displaystyle\frac72}+ \frac{3\left(x^{\displaystyle\frac32}\right)}{\displaystyle\frac32} + \frac{4\left(x^{\displaystyle\frac12}\right)}{\displaystyle\frac12} + C\end{align}
\begin{align} =\frac27\left(x^\frac72\right)+ 2\left(x^\frac32\right) + 8\left(x^\frac12\right) + C\end{align}
\begin{align} =\frac27\left(x^\frac72\right)+ 2\left(x^\frac32\right) + 8\left(\sqrt x\right) + C\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
In Figure, identify the following vectors.
(i) Coinitial (ii) Equal (iii) Collinear but not equal