\begin{align} \int \frac{x^3 + 5x^2 - 4}{x^2} . dx\end{align}
\begin{align} =\int \left(x + 5 - 4x^{-2}\right) . dx\end{align}
\begin{align} =\int x .dx + 5 \int 1.dx- 4 \int x^{-2} .dx\end{align}
\begin{align} =\frac {x^2}{2} + 5x + 4 \left(\frac{x^{-1}}{-1}\right) + C\end{align}
\begin{align} =\frac {x^2}{2} + 5x + \frac{4}{x} + C\end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The vertices of ΔABC are A (3, 5, −4), B (−1, 1, 2), and C (−5, −5, −2).
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
Let f : R → R be defined as f(x) = x4. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is
(A) 116 (B) 96 (C) 90 (D) 126
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.