Class 12 Mathematics - Chapter Differential Equations NCERT Solutions | \begin{align} y= \sqrt{1+x^2} :&nbs

Welcome to the NCERT Solutions for Class 12th Mathematics - Chapter Differential Equations. This page offers a step-by-step solution to the specific question from Excercise 2 , Question 4: begin align y nbsp sqrt 1 x 2 nbsp y 39....
Question 4

\begin{align} y= \sqrt{1+x^2} : y^{'}=\frac{xy}{1+x^2}\end{align}

Answer

\begin{align} y= \sqrt{1+x^2}\end{align}

Differentiating both sides of the equation with respect to x, we get:

\begin{align}  y^{'}=\frac{d}{dx}\left(\sqrt{1+x^2} \right)\end{align}

\begin{align}  y^{'}=\frac{1}{2\sqrt{1+x^2}}\frac{d}{dx}\left(1+x^2\right)\end{align}

\begin{align}  y^{'}=\frac{2x}{2\sqrt{1+x^2}}\end{align}

\begin{align}  y^{'}=\frac{x}{\sqrt{1+x^2}}\end{align}

\begin{align}\Rightarrow y^{'}=\frac{x}{\sqrt{1+x^2}}\frac{\sqrt{1+x^2}}{\sqrt{1+x^2}}\end{align}

\begin{align}\Rightarrow y^{'}=\frac{x}{1+x^2}{\sqrt{1+x^2}}\end{align}

\begin{align}\Rightarrow y^{'}=\frac{x}{1+x^2}{y}\end{align}

\begin{align}\Rightarrow y^{'}=\frac{xy}{1+x^2}\end{align}

∴ L.H.S. = R.H.S.

Hence, the given function is the solution of the corresponding differential equation.

 

 

Popular Questions of Class 12 Mathematics

Recently Viewed Questions of Class 12 Mathematics

Write a Comment: