\begin{align} y= \sqrt{1+x^2} : y^{'}=\frac{xy}{1+x^2}\end{align}
\begin{align} y= \sqrt{1+x^2}\end{align}
Differentiating both sides of the equation with respect to x, we get:
\begin{align} y^{'}=\frac{d}{dx}\left(\sqrt{1+x^2} \right)\end{align}
\begin{align} y^{'}=\frac{1}{2\sqrt{1+x^2}}\frac{d}{dx}\left(1+x^2\right)\end{align}
\begin{align} y^{'}=\frac{2x}{2\sqrt{1+x^2}}\end{align}
\begin{align} y^{'}=\frac{x}{\sqrt{1+x^2}}\end{align}
\begin{align}\Rightarrow y^{'}=\frac{x}{\sqrt{1+x^2}}\frac{\sqrt{1+x^2}}{\sqrt{1+x^2}}\end{align}
\begin{align}\Rightarrow y^{'}=\frac{x}{1+x^2}{\sqrt{1+x^2}}\end{align}
\begin{align}\Rightarrow y^{'}=\frac{x}{1+x^2}{y}\end{align}
\begin{align}\Rightarrow y^{'}=\frac{xy}{1+x^2}\end{align}
∴ L.H.S. = R.H.S.
Hence, the given function is the solution of the corresponding differential equation.
Determine order and degree(if defined) of differential equation y' + 5y = 0
Determine order and degree(if defined) of differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}
Determine order and degree(if defined) of differential equation (ym)2 + (yn)3 + (y')4 + y5 =0
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
Determine order and degree(if defined) of differential y' + y =ex
y = Ax : xy' = y (x ≠ 0)
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
Let f : R → R be defined as f(x) = 3x. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
Consider f : R+ → [– 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible
with .
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 3x2 + 36x + 5. The marginal revenue, when x = 15 is
(A) 116 (B) 96 (C) 90 (D) 126