Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
\begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0 \end{align}
\begin{align} \Rightarrow y^{m\;'}+\;\sin(y^m)\;=0 \end{align}
The highest order derivative present in the differential equation is ym '. Therefore, its order is four.
The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.
Determine order and degree(if defined) of differential equation y' + 5y = 0
Determine order and degree(if defined) of differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}
Determine order and degree(if defined) of differential equation (ym)2 + (yn)3 + (y')4 + y5 =0
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
Determine order and degree(if defined) of differential y' + y =ex
y = Ax : xy' = y (x ≠ 0)
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}
Determine order and degree(if defined) of differential equation yn + (y')2 + 2y =0
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
State with reason whether following functions have inverse
(i) f : {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
(ii) g : {5, 6, 7, 8} → {1, 2, 3, 4} with
g = {(5, 4), (6, 3), (7, 4), (8, 2)}
(iii) h : {2, 3, 4, 5} → {7, 9, 11, 13} with
h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π