Let A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\)
By expanding along the first row, we have:
|A| = 1\(\begin{vmatrix}1 & -3\\4 & -9\end{vmatrix}\) - 1\(\begin{vmatrix}2 & -3\\5 & -9\end{vmatrix}\) - 2\(\begin{vmatrix}2 & 1\\5 & 4\end{vmatrix}\)
= 1(-9 + 12) – 1(-18 + 15) -2(8 – 5)
= 1(3) – 1 (-3) – 2(3)
= 3 + 3 – 6
= 6 – 6
= 0
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?