Class 12 Mathematics - Chapter Determinants NCERT Solutions | If A = \(\begin{bmatrix}1 & 1 & -2\\2 &

Welcome to the NCERT Solutions for Class 12th Mathematics - Chapter Determinants. This page offers a step-by-step solution to the specific question from Excercise 1 , Question 6: if a begin bmatrix 1 1 2 2 1 3 5....
Question 6

If A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\), Find |A|

Answer

Let  A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\)

 

By expanding along the first row, we have:

 

|A|  = 1\(\begin{vmatrix}1 & -3\\4 & -9\end{vmatrix}\) - 1\(\begin{vmatrix}2 & -3\\5 & -9\end{vmatrix}\)  -  2\(\begin{vmatrix}2 & 1\\5 & 4\end{vmatrix}\)

= 1(-9 + 12) – 1(-18 + 15) -2(8 – 5)

= 1(3) – 1 (-3) – 2(3)

= 3 + 3 – 6

= 6 – 6

= 0

Popular Questions of Class 12 Mathematics

Write a Comment: