The given matrix is
A=\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\)
It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C1) for easier calculation.
| A| = 1\(\begin{vmatrix}1 & 2\\0 & 4\end{vmatrix}\) - 0\(\begin{vmatrix}0 & 1\\0 & 4\end{vmatrix}\) + 0\(\begin{vmatrix}0 &1\\1 & 2\end{vmatrix}\) = 1(4 – 0) – 0 + 0 = 4
So 27 |A| = 27 (4) = 108 ……. (i)
Now 3A = 3\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\)=\(\begin{bmatrix}3 & 0 & 3\\0 & 3 & 6\\0 & 0 & 12\end{bmatrix}\)
So |3A| = 3\(\begin{vmatrix}3 & 6\\0 & 12\end{vmatrix}\) - 0\(\begin{vmatrix}0 & 3\\0 & 12\end{vmatrix}\) + 0\(\begin{vmatrix}0 &3\\0 & 6\end{vmatrix}\)
= 3 (36 – 0) = 3(36) 108 ……….. (ii)
From equations (i) and (ii), we have:
|3A| = 27|A|
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
y = ex +1 : yn -y' = 0
Let f : N → N be defined by
State whether the function f is bijective. Justify your answer.
Consider f : {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f –1 and show that (f –1)–1 = f.
Check the injectivity and surjectivity of the following functions:
(i) f : N → N given by f(x) = x2
(ii) f : Z → Z given by f(x) = x2
(iii) f : R → R given by f(x) = x2
(iv) f : N → N given by f(x) = x3
(v) f : Z → Z given by f(x) = x3
Answer the following as true or false.
\begin{align}(i) \overrightarrow{a}\; and\; \overrightarrow{-a}\; are\; collinear.\end{align}
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
If f: R → R be given by f(x) = , then fof(x) is
(A)
(B) x3
(C) x
(D) (3 – x3).
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.