(i) \begin{vmatrix} \mathbf{Cosθ} & \mathbf{−sin θ} \\ \mathbf{sin θ} & \mathbf{cos θ} \end{vmatrix}
= (cos θ)(cos θ) − (−sin θ)(sin θ)
= cos2 θ+ sin2 θ
= 1
(ii) \begin{vmatrix} \mathbf{x^2 − x + 1} & \mathbf{x − 1} \\ \mathbf{x + 1} & \mathbf{x + 1} \end{vmatrix}
= (x2 − x + 1)(x + 1) − (x − 1)(x + 1)
= x3 − x2 + x + x2 − x + 1 − (x2 − 1)
= x3 + 1 − x2 + 1
= x3 − x2 + 2
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2