Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
The area of the region bounded by the curve, y2 = x, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.
\begin{align}Area \;of\; ABCD = \int_{1}^{4} y.dx \end{align}
\begin{align} = \int_{1}^{4} \sqrt{x}.dx \end{align}
\begin{align} =\left[\frac{x^\frac{3}{2}}{\frac{3}{2}}\right]_1^4 \end{align}
\begin{align} =\frac{2}{3}\left[(4)^\frac{3}{2} - (1)^{\frac{3}{2}}\right] \end{align}
\begin{align} =\frac{2}{3}\left[8 -1\right] \end{align}
\begin{align} =\frac{14}{3}\; Units \end{align}
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Let f : N → N be defined by
State whether the function f is bijective. Justify your answer.
Show that f : [–1, 1] → R, given by is one-one. Find the inverse of the function f : [–1, 1] → Range f.
(Hint: For y ∈ Range f, y =, for some x in [ - 1, 1], i.e.,
)
Let f : X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = 1Y(y) = fog2(y). Use one-one ness of f).
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
Determine order and degree(if defined) of differential equation yn + 2y' + siny = 0
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
Let A and B be sets. Show that f : A × B → B × A such that f(a, b) = (b, a) is bijective function.
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
Really very nice information on this site about maths and commerce classes.maths coaching in Jaipur Thanks for sharing this nice information.