Let x be the length of a side, V be the volume, and s be the surface area of the cube.
Then, V = x3 and S = 6x2 where x is a function of time t.
It is given that
\begin{align} \frac{dV}{dt} = 8 cm^3 / s \end{align}
Then, by using the chain rule, we have:
∴ \begin{align} \frac{dV}{dt} = \frac{d}{dt} (x^3) . \frac{dx}{dt} = 3x^2 . \frac{dx}{dt} =8 \end{align}
⇒ \begin{align} \frac{dx}{dt} = \frac{8}{3 x^2} ……… (1) \end{align}
Now \begin{align} \frac{dS}{dt} = \frac{d}{dx}(6x^2).\frac{dx}{dt} [By Chain Rule] \end{align}
\begin{align} =12x .\frac{dx}{dt} =12x.(\frac{8}{3x^2}) = \frac{32}{x} \end{align}
Thus, when x = 12 cm, \begin{align} \frac{dS}{dt} = \frac{32}{12} cm^2 / s = 8 cm^2 / s \end{align}
Hence, if the length of the edge of the cube is 12 cm, then the surface area is increasing at the rate of \begin{align} \frac{8}{3} cm^2 / s \end{align}.
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Let f: X → Y be an invertible function. Show that the inverse of f –1 is f, i.e., (f–1)–1 = f.
Determine order and degree(if defined) of differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^2\;+\;cos\left(\frac{dy}{dx}\right)\;=\;0\end{align}
\begin{align} y = xsinx:xy{'}=y +x\sqrt{x^2 -y^2}(x\neq0\; and\; x>y\; or\; x<-y)\end{align}
Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f–1 of f given by , where R+ is the set of all non-negative real numbers.
Determine order and degree(if defined) of differential equation y' + 5y = 0