Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
The volume of a cone (V) with radius (r) and height (h) is given by,
\begin{align}V=\frac{1}{3}\pi r^2h\end{align}
It is given that,
\begin{align}h=\frac{1}{6} r\Rightarrow r =6h\end{align}
\begin{align}\therefore V=\frac{1}{3}\pi (6h)^2.h = 12\pi h^3\end{align}
The rate of change of volume with respect to time (t) is given by,
\begin{align} \frac{dV}{dt}=12 \pi \frac{d}{dh}(h^3).\frac{dh}{dt}[By\; Chain\; Rule]\end{align}
\begin{align}=12 \pi (3h^2).\frac{dh}{dt}\end{align}
\begin{align}=36 \pi h^2.\frac{dh}{dt}\end{align}
It is also given that
\begin{align}\frac{dV}{dt}=12\;cm^3/s \end{align}
Therefore, when h = 4 cm, we have:
\begin{align}12=36\pi (4)^2.\frac{dh}{dt}\end{align}
\begin{align}\Rightarrow \frac{dh}{dt}=\frac{12}{36\pi (16)}=\frac{1}{48\pi}\end{align}
Hence, when the height of the sand cone is 4 cm, its height is increasing at the rate of
\begin{align}\frac{1}{48\pi}.\end{align}
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
The order of the differential equation
\begin{align}2x^2\frac{d^2y}{dx^2}\;- \;3\frac{dy}{dx}\;+ y=\;0\end{align}
is (A) 2 (B) 1 (C) 0 (D) not defined
y = x2 + 2x + C : y' - 2x - 2 = 0
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Let f : R → R be defined as f(x) = x4. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) f is neither one-one nor onto.