The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
The air bubble is in the shape of a sphere.
Now, the volume of an air bubble (V) with radius (r) is given by,
\begin{align} V = \frac{4}{3}\pi r^3 \end{align}
The rate of change of volume (V) with respect to time (t) is given by,
\begin{align} \frac{dV}{dt} = \frac{4}{3}\pi \frac{d}{dr}(r^3).\frac{dr}{dt} \;\;\;[By\; Chain\; Rule] \end{align}
\begin{align} = \frac{4}{3}\pi (3r^2).\frac{dr}{dt} \end{align}
\begin{align} = \frac{4}{3}\pi r^2.\frac{dr}{dt} \end{align}
It is given that
\begin{align} \frac{dr}{dt}=\frac{1}{2} cm/s .\end{align}
Therefore, when r = 1 cm,
\begin{align} \frac{dV}{dt}=4\pi(1)^2.(\frac{1}{2})=2\pi\; cm^3/s \end{align}
Hence, the rate at which the volume of the bubble increases is 2π cm3/s.
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
The degree of the differential equation
\begin{align}\left(\frac{d^2y}{dx^2}\right)^3\;+ \left(\frac{dy}{dx}\right)^2+\;sin\left(\frac{dy}{dx}\right)\;+ 1=\;0\end{align}
is (A) 3 (B) 2 (C) 1 (D) not defined
Determine order and degree(if defined) of differential equation ym + 2yn + y' =0
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Let f : X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = 1Y(y) = fog2(y). Use one-one ness of f).
Thanks