A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
Let y m be the height of the wall at which the ladder touches. Also, let the foot of the ladder be x maway from the wall.
Then, by Pythagoras theorem, we have:
x2 + y2 = 25 [Length of the ladder = 5 m]
\begin{align}\Rightarrow y = \sqrt{25 - x^2}\end{align}
Then, the rate of change of height (y) with respect to time (t) is given by,
\begin{align}\frac{dy}{dx} = \frac{-x}{\sqrt{25 - x^2}}.\frac{dx}{dt}\end{align}
It is given that
\begin{align}\frac{dx}{dt}= 2 \; cm/s.\end{align}
\begin{align}\therefore\frac{dy}{dt} = \frac{-2x}{\sqrt{25 - x^2}}\end{align}
Now, when x = 4 m, we have:
\begin{align}\therefore\frac{dy}{dt} = \frac{-2 \times 4}{\sqrt{25 - 4^2}}=-\frac{8}{3}\end{align}
Hence, the height of the ladder on the wall is decreasing at the rate of
\begin{align}\frac{8}{3}\end{align}
The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
The total revenue in Rupees received from the sale of x units of a product is given by
R (x) = 13x2 + 26x + 15
Find the marginal revenue when x = 7.
The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
A balloon, which always remains spherical, has a variable diameter
\begin{align} \frac{3}{2}(2x+1)\end{align}
Find the rate of change of its volume with respect to x.
A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
Prove that the function f(x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Determine order and degree(if defined) of differential equation \begin{align} \frac{d^4y}{dx^4}\;+\;\sin(y^m)\;=0\end{align}
Represent graphically a displacement of 40 km, 30° east of north.
If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.
Maximise Z = 3x + 4y
Subject to the constraints:x + y ≤ 4, x ≥ 0, y ≥ 0
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Thank u so much
need to change the units?
how do u got dy/dx