Class 12 Mathematics - Chapter Application of Derivatives NCERT Solutions | A balloon, which always remains spherica

Welcome to the NCERT Solutions for Class 12th Mathematics - Chapter Application of Derivatives. This page offers a step-by-step solution to the specific question from Exercise 1, Question 8: a balloon which always remains spherical on infla....
Question 8

A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.

Answer

The volume of a sphere (V) with radius (r) is given by,

\begin{align} V=\frac{4}{3}\pi r^2\end{align}

∴Rate of change of volume (V) with respect to time (t) is given by,

\begin{align} \frac{dV}{dt} =\frac{dV}{dr}.\frac{dr}{dt}\;\;\;[By\; Chain\; Rule]\end{align}

\begin{align} =\frac{d}{dr}\left(\frac{4}{3}\pi r^3\right).\frac{dr}{dt}\end{align}

\begin{align} =4\pi r^2.\frac{dr}{dt}\end{align}

It is given that

\begin{align} \frac{dV}{dt}=900\; cm^3/s\end{align}

\begin{align} \therefore 900=4\pi r^2.\frac{dr}{dt}\end{align}

\begin{align} \Rightarrow \frac{dr}{dt}=\frac{900}{4\pi r^2}=\frac{225}{\pi r^2}\end{align}

Therefore, when radius = 15 cm,

\begin{align} \frac{dr}{dt}=\frac{225}{\pi (15)^2}=\frac{1}{\pi }\end{align}

Hence, the rate at which the radius of the balloon increases when the radius is 15 cm is 

\begin{align} \frac{1}{\pi }\end{align}

More Questions From Class 12 Mathematics - Chapter Application of Derivatives

Popular Questions of Class 12 Mathematics

Recently Viewed Questions of Class 12 Mathematics

Write a Comment: