The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, –890.3 kJ mol–1 , –393.5 kJ mol–1, and –285.8 kJ mol–1 respectively. Enthalpy of formation of CH4(g) will be
(i) –74.8 kJ mol–1
(ii) –52.27 kJ mol–1
(iii) +74.8 kJ mol–1
(iv) +52.26 kJ mol–1
According to the question,
Thus, the desired equation is the one that represents the formation of CH4(g) i.e.,
[-393.5 + 2(-285.8) - (-890.3)] kJ Mol-1
= -74.8 kJ Mol-1
So,Enthalpy of formation of CH4(g) is -74.8 kJ Mol-1
That means answer is (i).
In a process, 701 J of heat is absorbed by a system and 394 J ofwork is done by the system. What is the change in internal energy for the process?
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
For the reaction at 298 K,
2A + B → C
ΔH = 400 kJ mol-1and ΔS = 0.2 kJ K-1mol-1
At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range?
A reaction, A + B → C + D + q is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(iv) possible at any temperature
The equilibrium constant for a reaction is 10. What will be the value of ΔG0 ? R = 8.314 JK–1 mol–1, T = 300 K.
Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0°C to ice at -10.0°C. ΔfusH = 6.03 kJ mol-1 at 0°C.
Cp[H2O(l)] = 75.3 J mol-1 K-1
Cp[H2O(s)] = 36.8 J mol-1 K-1
For an isolated system, ΔU = 0, what will be ΔS?
Calculate the enthalpy change for the process
CCl4(g) → C(g) + 4 Cl(g)
and calculate bond enthalpy of C – Cl in CCl4(g).
ΔvapH0(CCl4) = 30.5 kJ mol–1.
ΔfH0 (CCl4) = –135.5 kJ mol–1.
ΔaH0 (C) = 715.0 kJ mol–1 , where ΔaH0 is enthalpy of atomisation
ΔaH0 (Cl2) = 242 kJ mol–1
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Enthalpies of formation of CO(g), CO2(g), N2O(g) and N2O4(g) are –110, – 393, 81 and 9.7 kJ mol–1 respectively. Find the value of ΔrH for the reaction:
N2O4(g) + 3CO(g) → N2O(g) + 3CO2(g)
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Describe the shapes of BF3 and BH4-. Assign the hybridisation of boron in these species.
What is meant by 'demineralised' water and how can it be obtained?
Write the significance/applications of dipole moment.
Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
N2(g) + H2(g) → 2NH3(g)
(i) Calculate the mass of ammonia produced if 2.00 × 103 g dinitrogen reacts with 1.00 × 103 g of dihydrogen.
(ii) Will any of the two reactants remain unreacted?
(iii) If yes, which one and what would be its mass?
What causes the temporary and permanent hardness of water?
How do you express the bond strength in terms of bond order?
The degree of ionization of a 0.1M bromoacetic acid solution is 0.132. Calculate the pH of the solution and the pKa of bromoacetic acid.
Which one of the following will have largest number of atoms?
(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl2(g)
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
(a) PCl5 (g) ↔ PCl3 (g) + Cl2 (g)
(b) CaO (s) + CO2 (g) ↔ CaCO3 (s)
(c) 3Fe (s) + 4H2O (g) ↔ Fe3O4 (s) + 4H2 (g)