For M2+/M and M3+/M2+ systems, the Eā values for some metals are as follows:
Cr2+/Cr -0.9V
Cr3/Cr2+ -0.4 V
Mn2+/Mn -1.2V
Mn3+/Mn2+ +1.5 V
Fe2+/Fe -0.4V
Fe3+/Fe2+ +0.8 V
Use this data to comment upon:
(i) The stability of Fe3+in acid solution as compared to that of Cr3+or Mn3+ and
(ii) The ease with which iron can be oxidised as compared to a similar process for either chromium or manganese metal.
(i) The Eā value for Fe3+/Fe2+ is higher than that for Cr3+/Cr2+and lower than that for Mn3+/Mn2+. So, the reduction of Fe3+to Fe2+is easier than the reduction of Mn3+to Mn2+, but not as easy as the reduction of Cr3+ to Cr2+. Hence, Fe3+is more stable than Mn3+, but less stable than Cr3+. These metal ions can be arranged in the increasing order of their stability as: Mn3+< Fe3+< Cr3+
(ii) The reduction potentials for the given pairs increase in the following order.
Mn2+ / Mn < Cr2+ / Cr < Fe2+ /Fe
So, the oxidation of Fe to Fe2+is not as easy as the oxidation of Cr to Cr2+and the oxidation of Mn to Mn2+. Thus, these metals can be arranged in the increasing order of their ability to get oxidised as: Fe < Cr < Mn value for Fe3+/ Fe2+ is higher than that for Cr3+/Cr2+and lower than that for Mn3+/Mn2+. So, the reduction of Fe3+to Fe2+is easier than the reduction of Mn3+to Mn2+, but not as easy as the reduction of Cr3+ to Cr2+. Hence, Fe3+is more stable than Mn3+, but less stable than Cr3+. These metal ions can be arranged in the increasing order of their stability as: Mn3+< Fe3+< Cr3+ (ii) The reduction potentials for the given pairs increase in the following order. Mn2+ / Mn < Cr2+ / Cr < Fe2+ /Fe So, the oxidation of Fe to Fe2+is not as easy as the oxidation of Cr to Cr2+and the oxidation of Mn to Mn2+. Thus, these metals can be arranged in the increasing order of their ability to get oxidised as: Fe < Cr < Mn
Explain why Cu+ ion is not stable in aqueous solutions?
Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?
The Eθ(M2+/M) value for copper is positive (+0.34V). What is possibly the reason for this? (Hint: consider its high ΔaHV and low ΔhydHV)
How would you account for the following:
(i) Of the d4 species, Cr2+ is strongly reducing while manganese (III) is strongly oxidising.
(ii) Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidised.
(iii) The d1 configuration is very unstable in ions.
Actinoid contraction is greater from element to element than lanthanoid contraction. Why?
Which is a stronger reducing agent Cr2+ or Fe2+ and why?
Explain giving reasons:
(i) Transition metals and many of their compounds show paramagnetic behaviour.
(ii) The enthalpies of atomisation of the transition metals are high.
(iii) The transition metals generally form coloured compounds.
(iv) Transition metals and their many compounds act as good catalyst.
Give examples and suggest reasons for the following features of the transition metal chemistry:
(i)The lowest oxide of transition metal is basic, the highest is amphoteric/acidic.
(ii)A transition metal exhibits highest oxidation state in oxides and fluorides.
(iii) The highest oxidation state is exhibited in oxoanions of a metal.
Predict which of the following will be coloured in aqueous solution?
Ti3+, V3+, Cu+, Sc3+, Mn2+, Fe3+ and Co2+.
Give reasons for each.
Describe the preparation of potassium dichromate from iron chromite ore. What is the effect of increasing pH on a solution of potassium dichromate?
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Why are solids rigid?
Write any two characteristics of Chemisorption.
Write the structures of the following compounds.
(i) α-Methoxypropionaldehyde
(ii) 3-Hydroxybutanal
(iii) 2-Hydroxycyclopentane carbaldehyde
(iv) 4-Oxopentanal
(v) Di-sec-butyl ketone
(vi) 4-Fluoroacetophenone
Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
Why are pentahalides more covalent than trihalides?
Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.
Write structures of the following compounds:
(i) 2-Chloro-3-methylpentane
(ii) 1-Chloro-4-ethylcyclohexane
(iii) 4-tert. Butyl-3-iodoheptane
(iv) 1,4-Dibromobut-2-ene
(v) 1-Bromo-4-sec. butyl-2-methylbenzene
Write the name and structure of one of the common initiators used in free radical addition polymerisation.
What is the role of depressant in froth floatation process?
The hexaquo manganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory.
For a reaction, A + B → Product; the rate law is given by, r = k [A]½ [B]2. What is the order of the reaction?
Write reactions of the final alkylation product of aniline with excess of methyl iodide in the presence of sodium carbonate solution.
The decomposition of NH3on platinum surface is zero order reaction. What are the rates of production of N2and H2if k = 2.5 x 10-4mol-1L s-1?
Comment on the nature of two S-O bonds formed in SO2 molecule. Are the two S-O bonds in this molecule equal?
How is 1-propoxypropane synthesised from propan-1-ol? Write mechanism of this reaction.
Give the uses of freon 12, DDT, carbon tetrachloride and iodoform.
The following results have been obtained during the kinetic studies of the reaction: 2A + B → C + D
Experiment |
A/ mol L - 1 |
B/ mol L - 1 |
Initial rate of formation of D/mol L - 1 min - 1 |
I | 0.1 | 0.1 |
6.0 × 10 - 3 |
II | 0.3 | 0.2 |
7.2 × 10 - 2 |
III | 0.3 | 0.4 |
2.88 × 10 - 1 |
IV | 0.4 | 0.1 |
2.40 × 10 - 2 |
Determine the rate law and the rate constant for the reaction.