(a) How many sub-shells are associated with n = 4?
(b) How many electrons will be present in the sub-shells having ms value of –1/2 for n = 4?
(a) n = 4 (Given)
For a given value of ‘n’, ‘l’ can have values from zero to (n – 1).
∴ l = 0, 1, 2, 3
Thus, four sub-shells are associated with n = 4, which are s, p, d and f.
(b) Number of orbitals in the nth shell = n2
For n = 4
Number of orbitals = 16
Each orbital has one electron with ms = -1/2
Hence there will be 16 electrons with ms = -1/2
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
Which of the following are isoelectronic species i.e., those having the same number of electrons?
Na+, K+, Mg2+, Ca2+, S2–, Ar
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
The type of hybridisation of boron in diborane is
(a) sp (b) sp2 (c) sp3 (d) dsp2
Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
Explain why the following systems are not aromatic?
Write IUPAC names of the following compounds :
What are the harmful effects of photochemical smog and how can they be controlled?
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
(a) PCl5 (g) ↔ PCl3 (g) + Cl2 (g)
(b) CaO (s) + CO2 (g) ↔ CaCO3 (s)
(c) 3Fe (s) + 4H2O (g) ↔ Fe3O4 (s) + 4H2 (g)
Draw the structure of (i) BeCl2 (vapour) (ii) BeCl2 (solid).
What are allotropes? Sketch the structure of two allotropes of carbon namely diamond and graphite. What is the impact of structure on physical properties of two allotropes?
Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?
A sample of HI(g) is placed in flask at a pressure of 0.2 atm. At equilibrium the partial pressure of HI(g) is 0.04 atm. What is Kp for the given equilibrium ?
2HI (g) ↔ H2 (g) + I2 (g)
thank you
finally
Abe kese hua yeee
Thanks for mc help
nice , thanx for explaining all answers
Thank you for helping us
Thanxxx