(i) Calculate the total number of electrons present in one mole of methane.
(ii) Find
(a) the total number and
(b) the total mass of neutrons in 7 mg of 14C. (Assume that mass of a neutron = 1.675 × 10–27 kg).
(iii) Find
(a) the total number and
(b) the total mass of protons in 34 mg of NH3 at STP.
Will the answer change if the temperature and pressure are chang
(i) Molecule of CH4 (methane) contains electron = 10
Therefore 1 mole (6.022 x 1023 atoms) contains electron = 6.022 x 1024
(ii) a) 1g atom of 14C = 14g = 6.022 x 1023 atoms = 6.022 x 1024 x 8 neutrons
Thus 14g or 14000 mg have 6.022 x 1024 x 8 neutrons
Therefore 7 mg will have neutrons = 6.022 x 1024 x 8 / 14000 x 7 = 2.4088 x 1022
b) mass of 1 neutron = 1.675 x 10-27 kg
Therefore mass of 2.4088 x 1021 neutrons = 2.4088 x 1021 x 1.67 x 10-27 = 4.0347 x 10-6 kg
(iii) a) 1 mol of NH3 = 17g NH3 = 6.022 x 1023 molecules of NH3 = (6.022x1023)(7 + 3) proton = 6.022 x 1024 protons
Therefore 34 mg i.e 0.034 g NH3 = 6.022 x 1024 x 0.034/1 = 1.2044 x 1022 protons
b) mass of 1 proton = 1.6726 x 10-27 kg
Therefore mass of 1.2044 x 1022 protons = (1.6726 x 10-27)(1.2044 x 1022) kg = 2.0145 x 10-5 kg
No, the answer will not change with change in temperature & pressure.
The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.
Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.
Using s, p, d notations, describe the orbital with the following quantum numbers.
(a) n = 1, l = 0;
(b) n = 3; l =1
(c) n = 4; l = 2;
(d) n = 4; l =3.
Which of the following are isoelectronic species i.e., those having the same number of electrons?
Na+, K+, Mg2+, Ca2+, S2–, Ar
Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.
How many electrons in an atom may have the following quantum numbers?
(a) n = 4,
(b) n = 3, l = 0
Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number () of the yellow light.
Indicate the number of unpaired electrons in: (a) P, (b) Si, (c) Cr, (d) Fe and (e) Kr.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate
(i) the energy of the photon (eV),
(ii) the kinetic energy of the emission, and
(iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
What do you understand by
(a) inert pair effect
(b) allotropy and
(c) catenation?
Use the data given in the following table to calculate the molar mass of naturally occurring argon isotopes:
Isotope |
Isotopic molar mass |
Abundance |
36Ar |
35.96755 gmol–1 |
0.337% |
38Ar |
37.96272 gmol–1 |
0.063% |
40Ar |
39.9624 gmol–1 |
99.600% |
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
Boric acid is polymeric due to
(a) its acidic nature (b) the presence of hydrogen bonds (c) its monobasic nature (d) its geometry
In a reaction A + B2 → AB2 Identify the limiting reagent, if any, in the following reaction mixtures.
(i) 300 atoms of A + 200 molecules of B
(ii) 2 mol A + 3 mol B
(iii) 100 atoms of A + 100 molecules of B
(iv) 5 mol A + 2.5 mol B
(v) 2.5 mol A + 5 mol B
Calculate the temperature of 4.0 mol of a gas occupying 5 dm3 at 3.32 bar.
(R = 0.083 bar dm3 K–1 mol–1).
What would be the SI unit for the quantity pV2T 2/n?
What is the minimum volume of water required to dissolve 1g of calcium sulphate at 298 K? (For calcium sulphate, Ksp is 9.1 x 10-6).
Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the following correct orders of acidity of the carboxylic acids?
(a) Cl3CCOOH > Cl2CHCOOH > ClCH2COOH
(b) CH3CH2COOH > (CH3)2CHCOOH > (CH3)3C.COOH
Discuss the principle and method of softening of hard water by synthetic ion-exchange resins.
i need questions and answers of chemistry 11 edition
Easy method helpfull
multiplication is wrong
Easy to learn Very helpful