Pay load is defined as the difference between the mass of displaced air and the mass of the balloon. Calculate the pay load when a balloon of radius 10 m, mass 100 kg is filled with helium at 1.66 bar at 27°C. (Density of air = 1.2 kg m–3 and R = 0.083 bar dm3 K–1 mol–1).
Payload of the ballon = mass of the displaced air – mass of the ballon
Radius of the ballon, r = 10 m
Mass of the ballon, m = 100kg
Therefore volume of the ballon = 4/3πr3 = 4/3 x 22/7 x (10)3 = 4190.5 m3
Now volume of the displaced air = 4190.5 m3
Given,
Density of air = 1.2 kg m–3
Therefore, the mass of the displaced air
= 4190.5 x 1.2 = 5028.6 kg
Let w be the mass of helium gas filled into the ballon,then
PV = (w/m)RT
OR w = PVM/RT
= (1.66 X 4190.5 X 103 X 4) / (0.083 X 300)
= 1117 kg (approx)
Total mass of the balloon filled with He = 1117 + 100 = 1217 kg
Therefore payload of the balloon = 5028.6 – 1217 = 3811.6 kg
Hence, the pay load of the balloon is 3811.6 kg.
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
At 0°C, the density of a certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?
Density of a gas is found to be 5.46 g/dm3 at 27 °C at 2 bar pressure. What will be its density at STP?
Calculate the temperature of 4.0 mol of a gas occupying 5 dm3 at 3.32 bar.
(R = 0.083 bar dm3 K–1 mol–1).
A vessel of 120 mL capacity contains a certain amount of gas at 35 °C and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at 35 °C. What would be its pressure?
Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined in a vessel of 1 dm3 at 27°C. R = 0.083 bar dm3 K–1 mol–1.
Calculate the volume occupied by 8.8 g of CO2 at 31.1°C and 1 bar pressure.
R = 0.083 bar L K–1 mol–1.
34.05 mL of phosphorus vapour weighs 0.0625 g at 546 °C and 0.1 bar pressure. What is the molar mass of phosphorus?
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of dihydrogen at 17 °C, at the same pressure. What is the molar mass of the gas?
What would be the SI unit for the quantity pV2T 2/n?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
How would you explain the following observations?
(i) BeO is almost insoluble but BeSO4 in soluble in water,
(ii) BaO is soluble but BaSO4 is insoluble in water,
(iii) LiI is more soluble than KI in ethanol.
Which of the two: OO2NCH2CH2O- or CH3CH2O- is expected to be more stable and why?
Write structures of all the alkenes which on hydrogenation give 2-methylbutane.
What is the relationship between the members of following pairs of structures? Are they structural or geometrical isomers or resonance contributors?
(a)
(b)
(c)
How do you account for the formation of ethane during chlorination of methane?
Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
Give a brief description of the principles of the following techniques taking an example in each case.
(a) Crystallisation
(b) Distillation
(c) Chromatography
The concentration of hydrogen ion in a sample of soft drink is 3.8 × 10–3 M. what is its pH?
Why does benzene undergo electrophilic substitution reactions easily and nucleophilic substitutions with difficulty?
Write the atomic number of the element present in the third period and seventeenth group of the periodic table.
Thank you for giving me this solution of this question in a very simple way
Thanks for doing this questions
Best