What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a 9 dm3 flask at 27 °C ?
Given,
Mass of carbon dioxide = 4.4 g
Molar mass of carbon dioxide= 44g/mol
Mass of methane = 3.2g
Molar mass of methane = 16g/mol
Now amount of methane, nCH4 = 3.2/ 16 = 0.2 mol
& amount of CO2 nCO2 = 4.4/ 44 = 0.1 mol
Also we know ,
Pv = (nCH4 + nCO2) RT
OR P X 9 = (0.2 +0.1) x 0.0821 x 300
Or p = 0.3 x 0.0821 x 300 / 9 = 0.821 atm
Hence, the total pressure exerted by the mixture is 0.821 atm
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
At 0°C, the density of a certain oxide of a gas at 2 bar is same as that of dinitrogen at 5 bar. What is the molecular mass of the oxide?
Density of a gas is found to be 5.46 g/dm3 at 27 °C at 2 bar pressure. What will be its density at STP?
Calculate the temperature of 4.0 mol of a gas occupying 5 dm3 at 3.32 bar.
(R = 0.083 bar dm3 K–1 mol–1).
A vessel of 120 mL capacity contains a certain amount of gas at 35 °C and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at 35 °C. What would be its pressure?
Calculate the total pressure in a mixture of 8 g of dioxygen and 4 g of dihydrogen confined in a vessel of 1 dm3 at 27°C. R = 0.083 bar dm3 K–1 mol–1.
Calculate the volume occupied by 8.8 g of CO2 at 31.1°C and 1 bar pressure.
R = 0.083 bar L K–1 mol–1.
34.05 mL of phosphorus vapour weighs 0.0625 g at 546 °C and 0.1 bar pressure. What is the molar mass of phosphorus?
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of dihydrogen at 17 °C, at the same pressure. What is the molar mass of the gas?
What would be the SI unit for the quantity pV2T 2/n?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
What is the SI unit of mass? How is it defined?
At 450K, Kp= 2.0 × 1010/bar for the given reaction at equilibrium.
2SO2(g) + O2(g) ↔ 2SO3 (g)
What is Kc at this temperature ?
The skeletal structure of CH3COOH as shown below is correct, but some of the bonds are shown incorrectly. Write the correct Lewis structure for acetic acid.
Carbon monoxide gas is more dangerous than carbon dioxide gas. Why?
Explain with the help of suitable example polar covalent bond.
Calculate the mass percent of different elements present in sodium sulphate (Na2SO4).
Write the formulae for the following compounds:
(a) Mercury(II) chloride
(b) Nickel(II) sulphate
(c) Tin(IV) oxide
(d) Thallium(I) sulphate
(e) Iron(III) sulphate
(f) Chromium(III) oxide
Calculate the pH of the following solutions:
(a) 2 g of TlOH dissolved in water to give 2 litre of solution.
(b) 0.3 g of Ca(OH)2 dissolved in water to give 500 mL of solution.
(c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(d) 1mL of 13.6 M HCl is diluted with water to give 1 litre of solution.
At 700 K, equilibrium constant for the reaction:
H2 (g) + I2 (g) ↔ 2HI (g)
is 54.8. If 0.5 mol L–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
Thank you very much. .. ðIt helps a lot..
Thanks
Thanks
Thanks
Thanks
Thanks
Love you
Nice your solution is easy
Thanks a lot mam/sir you made NCERT easy and their concepts easy by giving their detailed solutions thanks for ur site
Thank u its help me